~
AD—A278 080 NTATION PAGE |rrmiwo U

I ' l l o average 1 hour per response, thmummwmmhrvmwuamm
‘ mdnon M:«zﬁomimwmowmdwwdlMWMdnmm induding

and Reports, 1215 Jeflerson Davis Highway, auite 1204, Arfington, VA
22202-4302, w\olmmdmmmwmmm Oﬁmd&nwww Washington, DC 20603.

1. AGENCY USE (Leave 2. REPORT 3. REPORT TYPE AND DATES
R wyten) L. Jue o oo w1285 [T16
TR cmwi{i VAX/ TA60 As Comprke Dysiomy ELECTE ;
ATIhGT S
AL 6“ ot erson AFE c
7. PERFORMING ORGANIZATION NAME(S) AND 8. PERFORMING

.Ado\ ol Lo bron _f““ by ijnjw%‘_ 0y ntcol f“.'m/ ORGANIZATION
Asp/scll LHD«‘ (-)'7/(. CRoam 120
A,

. P ~ \ o . -y
Weight - Otferson AFD , Doy tor o 45473
m U 10. SPONSORING/MONITORING
Ada Joint Program Office AGENCY

The Pentagon, Rm 3E118
Washington, DC 20301-3080

11. SUPPLEMENTARY

12a. DISTRIBUTION/AVAILABILITY 12b. DISTRIBUTION

" DISTAIZUTION STATEMENT X
i Approvea wor puciic release }

!.,*___‘ Dismbunon Unlimared

13. (Maximum 200

’

76/‘)‘{7,-‘ DEC toral Ao (Uotwock VAX Cluster (CQM-’Q!.?M-,‘C)%
o \/AX 5100 rmos é{ ﬁu Mo dnire ‘z) {onfor Vs 5"56)

LO_(_%,‘* ((3(\\4 \J{—J—A (/\}6 [;A/‘("(?L/uf» liétﬁci’?{({ (F‘TQCP"X>
bq"(f Y"\‘)"\"““'(\’e) Um0 rT_‘L D K\?; \ {vme E;\'t’.{' A } /e

A

'] . oy \
(TZ‘D r'{‘”i")) (() O)\h (u M\ e ‘dl\\) J \/(r der - /w])
Vv
(14, SUBJECT o - o - 15. NUMBER OF
4JJ\ Prkn)()\r ~na 0 DO, /? “ (a{ /q:() LJ P lf(\/ J(OCFI('\ \/: e /
r@ ot Ada G e Vo] Wf‘a‘ L, Vst Tox /), Adu Vol FerReE—
Poet et ady \/m,&/ boc 'Ry ApsT fmric ,7"7 ‘/C v, A AT)
17. SECURITY 18. SECURITY 19. SECURITY 20, LIMITATION OF
CLASSIFICATION CLASSIFICATION
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

Prescribed by ANS| Std.

AVF Control Number: AVF-VSR-582.0394
Date VSR Completed: March 14, 1994
94-02-14-TLD

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 940305W1.11335
TLD Systems, Ltd.
TLD Comanche VAX/i960 Ada Compiler System, Version 4.1.1
VAX Cluster under VMS 5.5 =>
Tronix JIAWG Execution Vehicle (i960MX)
under TLD Real Time Executive, Version 4.1.1

Final f
(Final) Accesion for /
NTIS CRA&]
OTIC TAB B
Unannounced 0]

Prepared By: Justification

Ada validation Facility

645 CCSG/SCSL v
Wright-Patterson AFB OH 45433-5707 BYQQ.L___M.m__&_. |

Disiribuﬁon {

Avadlability Codes

Avail and/or
Dist Special

-\

PTIC QUALTIY INEZLCTED 3

94-10998 -
AR 94 4 11 114

Certificate Information

The following Ada implementation was tested and determined to pass ACVC 1.11.
Testing was completed on 5 March 1994.

Compiler Name and Version: TLD Comanche VAX/i960 Ada Compiler System,
Version 4.1.1

Host Computer System: DEC Local Area Network VAX Cluster (comprising
2 MicroVAX 3100 Model 90 machines) (VMS 5.5)

Target Computer System: Tronix JIAWG Execution Vehicle (i960MX)
under TLD Real Time Executive (TLDrtx)
(Domain Configuration), Version 4.1.1

Customer Agreement Number: 94-02-14-TLD

See section 3.1 for any additional information about the testing environment.

As a result of this validation effort, validation Certificate 940305W1.11335
is awarded to TLD Systems, Ltd. This certificate expires two years after
MIL-STD-1815B is approved by ANSI.

This report has been reviewed and is approved.

Ada Validation Fac:.:gli ty%

Dale E. Lange

Technical Director

645 CCSG/SCSL

Wright-Patterson AFB OH 45433-5707

Institute for Defense Analyses
Alexandria VA 22311

Ada Joint Program Office

David R. Basel

Deputy Director

Defense Information Systems Agency,
Center for Information Management

DECLARATION OF CONFORMANCE

Cugtomer: TLD Systems, Ltd.

Ada Validation Facility: €45 C-CSG/SCSL
Wright-Patterson AFB OH 45433-6503

ACVC Version: 1.11
Ada Implementation:

Compiler Name and Version: TLD Comanche VAX/i960 Ada
Compiler System, Version 4.1.1

Host Computer System: Digital Local Area Network VAX Cluster
executing on (2) MicroVAX 3100 Model 90
under VAX/VMS S5.5.

Target Computer System: Tronix JIAWG Execution Vehicle (i960MX)
running TLD Real Time Executive (TLDrtx),
(Domain Configuration), Version 4.1.1

Customer’s Declaration

I, the undersigned, representing TLD Systems, Ltd., declare that TLD
Systems, Ltd. has no knowledge of deliberate deviations from the Ada
Language Standard ANSI/MIL-STD-181SA in the implementation listed in this
declaration executing in the default mode. The certificates shall be
‘awarded in.TLP Systems, Ltd.’s corporate name.

o —

4’ . g) //’
Sk
~ s
'Kﬂ oy /”—\\ Date: F 1994
-TLD S¥s , Ltd. o

Terry L. Dunbar, President

vAX/1960/TRONIX PAGE 1

TABLE OF CONTENTS

INTRODUCTION

1 USE OF THIS VALIDATION SUMMARY REPORT . .
2 REFERENCES.
3
4

ACVC TEST CLASSES
DEFINITION OF TERMS ¢ « « &+ o « &

IMPLEMENTATION DEPENDENCIES
WITHDRAWN TESTS . . . & « ¢« « v ¢ ¢ o o &

PROCESSING INFORMATION

TESTING ENVIRONMENT . . . « « « « « « « &
SUMMARY OF TEST RESULTS . . . « « « o « &
TEST EXECUTION. . . . ¢ ¢ « ¢ ¢ o o o « &«

WWW W NN N e
. * 1]
wn

APPENDIX A MACRO PARAMETERS
APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

1
.2 INAPPLICABLE TESTS. « e e e s
3 TEST MODIFICATIONS. . « « ¢« « ¢ o o o o o &«

1-1
1-2
1-2
1-3

2-1

. 2-4

3-1
3-1
3-2

CHAPTER 1
INTRODUCTION

The Ada implementation described above was tested according to the ada
Validation Procedures ([Pro92] against the Ada Standard [Ada83) using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation. For
any technical terms used in this report, the reader is referred to [Pro92].
A detailed description of the ACVC may be found in the current ACVC User’s
Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply only
to the computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization

Computer and Software Engineering Division
Institute for Defense Analyses

1801 North Beauregard Street

Alexandria VA 22311-1772

1-1

1

INTRODUCTION

1.2 REFERENCES

{Ada83] Reference Manual for the Ada Programming Lan e,
ANSI/MIL-STD-1815A, February 1983 and IS0 BG§§-§§87.

[Pro92) Ada Compiler Validation Procedures, Version 3.1, Ada Joint
Program Office, August 1992.

[UGB9) Ada Compiler Validation Capability User’s Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes: A,
B, C, D, E, and L. The first letter of a test name identifies the class'to
which it belongs. Class A, C, D, and E tests are executable. Class B and
class L tests are expected to produce errors at compile time and link time,
respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they are
executed. Three Ada library units, the packages REPORT and SPPRT13, and the
procedure CHECK FILE are used for this purpose. The package REPORT also
provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of text
files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class B
tests are not executable. Each test in this class is compiled and the
resulting compilation 1listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Cléss L tests check that an Ada implementation correctly detects violation of
the Ada Standard involving multiple, separately compiled units. Errors are
expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values — for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the AVF.
This customization consists of making the modifications described in the
preceding paragraph, removing withdrawn tests (see section 2.1), and possibly
removing some inapplicable tests (see section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of the
customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added to
a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user’s guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program ° guidance for the Ada certification system.

Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization

(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada

Implementation
Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or part

of a program and also for all or part of the data necessary
for the execution of the program; executes user-written or
user-designated programs; performs user-designated data
manipulation, including arithmetic operations and logic
operations; and that can execute programs that modify
themselves during execution. A computer system may be a
stand-alone unit or may consist of several inter-connected
units.

\—

INTRODUCTION

Conformity Fulfillment by a product, process, or service of all
requirements specified.

Customer An individual or corporate entity who enters into an agreement
with an AVF which specifies the terms and conditions for AVF
services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for which
validation status is realized.

Host Computer A computer system where Ada source programs are transformed

System into executable form.

Inapplicable A test that contains one or more test objectives found to be
test irrelevant for the given Ada implementation.

IS0 International Organization for Standardization.

LRM The Ada standard, or Language Reference Manual, published as

ANSI/MIL~STD-1815A-1983 and 1SO 8652-~1987. Citations from the
LRM take the form "<section>.<subsection>:<paragraph>."

Operating Software that controls the execution of programs and that

System provides services such as resource allocation, scheduling,
input/output control, and data management. Usually, operating
systems are predominantly software, but partial or complete
hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro92].

Validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate for
this implementation.

Withdrawn A test found to be incorrect and not used in conformity

test testing. A test may be incorrect because it has an invalid
test objective, fails to meet its test objective, or contains
erroneous or illegal use of the Ada programming language.

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 22 November 1993. .

B27005A E28005C B28006C C32203a C34006D C35507K
€35507L C35507N €355070 C35507p C355081 C35508J
€35508M C35508N C35702A C35702B C37310A B41308B
C43004A C45114a C45346a c45612a C45612B C45612C
C45651A C46022A B49008A B49008B AS54B02A C55B06A
A74006A C74308A B83022B B83022H B83025B B83025D
C83026A B83026B €83041A B85001L C86001F C94021A
C97116A €98003B BA2011A CB7001A CB7001B CB7004A
cClaa3a BC1226A CCl226B BC30098 BD1B02B BD1BO6A
AD1B08A BD2A02A CD2A21E CD2A23E CD2A32A CD2A41A
CD2A41E CD2AS7A CD2B15C BD3006A BD4008A CD4022A
CD4022D CD4024B CD4024C CD4024D CD4031A CD4051D
CD5111A CD7004C ED7005D CD7005E AD7006A CD7006E
AD7201A AD7201E CD7204B AD7206A BD8002A BD8004C
CD9005A CD9005B CDA201E CE21071 CE2117A CE2117B
CE2119B CE2205B CE2405A CE3111C CE3116A CE3118A
CE3411B CE3412B CE3607B CE3607C CE3607D CE3812A
CE3814A CE3902B

- 2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test’s inapplicability may be
supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

IMPLEMENTATION DEPENDENCILS

The following 201 tests have floating-point type declarations requiring
more digits than SYSTEM.MAX DIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..2 (15 tests)

C24113H..K (4 tests) have a line length greater than the maximum allowed
line length of 120 for this implementation.

The following 20 tests check for the predefined type LONG INTEGER; for
this implementation, there is no such type:

C35404C C45231C C45304C C45411C c45412C

€45502C C45503C €45504C C45504F C45611C

C45613C C45614C C45631C C45632C B52004D

C55807Aa B55B09C B86001W C86006C CD7101F
C35404D, C45231D, B86001X, C86006E, and CD7101G check for a predefined
integer type with a name other than INTEGER, LONG INTEGER, or
SHORT INTEGER; for this implementation, there is no such type.
C35713B, C45423B, B86001T, and CB86006H check for the predefined type

SHORT FLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONG FLOAT, or SHORT FLOAT; for this
implementation, there is no such type.

C45531M..P and C45532M..P (8 tests) check fixed-point operations for
types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAX MANTISSA is less than 47.

C45536A, C€46013B, C€46031B, C46033B, and C46034B contain length clauses
that specify values for ’SMALL that are not powers of two or ten; this
implementation does not support such values for ’SMALL.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS 1is FALSE for floating point types and the results of
various floating-point operations 1lie outside the range of the base
type; for this implementation, MACHINE OVERFLOWS is TRUE.

D64005F..G (2) tests use 10 levels of recursive procedure calls nesting;
this level of nesting for procedure calls exceeds the capacity of the
compiler.

IMPLEMENTATION DEPENDENCIES

B8600lY uses the name of a predefined fixed-point type other than type
DURATION; for this implementation, there is no such type.

CA3004E..F (2 tests) check that a program will execute when an optional
body of one of its library packages is made obsolete; this
implementation introduces additional dependences of the package
declaration on its body as allowed by LRM 10.3(8), and thus the library
unit is also made obsolete. (See Section 2.3.)

LA5007S..T (2 tests) check that a program cannot execute if a needed
library procedure is made obsolete by the recompilation of a library
unit named in that procedure’s context clause; this implementation
determines that the recompiled unit’s specification did not change, and
so it does not make the dependent procedure obsolete. (See Section
2.3.)

CD1009C checks whether a length clause can specify a non-default size
for a floating-point type; this implementation does not support such
sizes. ~

CD2A53A checks operations of a fixed-point type for which a length
clause specifies a power-of-ten TYPE'SMALL; this implementation does not
support decimal ’‘SMALLs. (See section 2.3.)

CD2A84A, CD2AB4E, CD2AB4I..J (2 tests), and CD2A840 use length clauses
to specify non-default sizes for access types; this implementation does
not support such sizes.

The following 264 tests check operations on sequential, text, and direct
access files; this implementation does not support external files (See
Section 2.3 regarding CE3413B):

CE2102A..C (3) CE2102G..H (2) CE2102K CE2102N..Y (12)
CE2103C..D (2) CE2104A..D (4) CE2105A..B (2) CE2106A..B (2)
CE2107A..H (8) CE2107L CE2108A..H (8) CE2109A..C (3)

CE2110A..D (4) CE2111A..I (9) CE2115A..B (2) CE2120A..B (2)
CE2201A..C (3) EE2201D..E (2) CE2201F..N (9) CE2203A

CE2204A..D (4) CE2205A CE2206A CE2208B
CE2401A..C (3) EE2401D CE2401E..F (2) EE2401G
CE2401H..L (5) CE2403A CE2404A..B (2) CE2405B
CE2406A CE2407A..B (2) CE2408A..B (2) CE2409A..B (2)
CE2410A..B (2) CE2411A CE3102A..C (3) CE3102F..H (3)
CE3102J..K (2) CE3103A CE3104A..C (3) CE3106A..B (2)
CE3107B CE3108A..B (2) CE3109a CE3110A
CE3111A..B (2) CE311lD..E (2) CE3112A..D (4) CE3114A..B (2)
CE3115A CE3119A EE3203A EE3204A
CE3207A CE3208A CE3301A EE3301B
CE3302A CE3304A CE3305A CE3401Aa
CE3402A EE3402B CE3402C..D (2) CE3403A..C (3)
CE3403E..F (2) CE3404B..D (3) CE3405A EE3405B
CE3405C..D (2) CF3406A..D (4) CE3407A..C (3) CE3408a..C (3)
CE3409A CE3409C..E (3) EE3409F CE3410a
CE3410C..E (3) EE3410F CE3411A CE3411C

IMPLEMENTATION DEPENDENCIES

CE3412a EE3412C CE3413A..C (3) CE3414A

CE3602A..D (4) CE3603A CE3604A..B (2) CE3605A..E (5)
CE3606A..B (2) CE3704A..F (6) CE3704M..0 (3) CE3705A..E (5)
CE3706D CE3706F..G (2) CE3804A..P (16) CE3805A..B (2)
CE3806A..B (2) CE3806D..E (2) CE3806G..H (2) CE3904A..B (2)
CE3905A..C (3) CE390SL CE3906A..C (3) CE3906E..F (2)

CE2103A, CE2103B, and CE3107A use an illegal file name in an attempt to
create a file and expect NAME ERROR to be raised; this implementation
does not support external files and so raises USE_ERROR. (See section
2.3.)

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 63 tests.

Note: CD2A81A is subject to two, distinct modifications as described below
.{the test name is marked with an asterisk).

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B220052 B24009A B25002A B26005A B44004D B59001E
B73004B B83033B BA1020C BA1020F BA1101C BA2001E
BA3006A BA3013A

C34009D and C34009J were graded passed by Evaluation Modification as directed
by the AVO. These tests check that 'SIZE for a composite type is greater
than or equal to the sum of its components’ ’SIZE values; but this issue is
addressed by AI-00825, which has not been considered; there is not an obvious
interpretation. This implementation represents array components whose length
depends on a discriminant with a default value by implicit pointers into the
heap space; thus, the ’SIZE of such a record type might be less than the sum
of its components ‘SIZEs, since the size of the heap space that is used by
the varying-length array components is not counted as part of the ’'SIZE of
the record type. These tests were graded passed given that the Report.Result
output was "FAILED" and the only Report.Failed output was "INCORRECT
'BASE'SIZE", from line 195 in C34009D and line 193 in C34009J.

C64104a, CB2006A, CB4002A, and CC1311B were graded passed by Processing
Modification as directed by the AVO. These tests make various checks that
CONSTRAINT ERROR is raised for certain operations when the resultant values
lie outside of the range of the subtype. However, in many of the particular
checks that these tests make, the exception-raising operation may be avoided
as per LRM 11.6(7) by optimization that removes the operation if its only
possible effect is to raise an exception (e.g., an assignment to a variable
that is not later referenced). In the list below, beside the name of each
affected test is given the line number of the check that is skipped (with a
relevant associated operation’s line number noted in parenthesis). These
tests were processed both with and without optimization: the tests reported a
passed result without optimization; with optimization, the checks cited below

2-4

IMPLEMENTATION DEPENDENCIES

were skipped and a corrésponding call to REPORT.FAILED was made.

€64104A 174 (copy back of parameter value)
CB2006A 36

CB4002A 85 (initialization @ 54)

CC1311B 55 (default parameter value € 36)

C98001C was graded passed by Processing Modification as directed by the AVO.
This test checks that a non-static argument to pragma Priority is not
evaluated; it uses the pragma for the main program and within a task unit in
the body of this program. This implementation evaluates the argqument when
the pragma appears in a task unit (at line 27) only; this behavior is in
conformity to the draft revised Ada standard (a non-static argument will be
illegal for a main program). (The AVO allows implementers to adopt Ada9x
rules for Ada83 features so as to encourage the transition to the revised
rules.) The test was processed with and without line 27 being commented out,
and it reported "PASSED" and "FAILED" respectively.

CA3004E..F (2 tests) were graded inapplicable by Evaluation Modification as
directed by the AVO. These tests check that a program will execute when an
optional body of one of its library packages is made obsolete. This
implementation, for optimization purposes, compiles all compilation units of
a compilation into a single object module with a single set of control
sections, collectively pooled constants, with improved addressing. As a
consequence, the optional package body of these tests and its corresponding
library unit have a mutual dependence, and thus the library unit is also made
obsolete. - This implementation-generated dependence is allowed by LRM
10.3(8).

LAS007S..T (2 tests) were graded inapplicable by Evaluation Modification as
directed by the AVO. These tests check that a program cannot execute if a
needed library procedure is made obsolete by the recampilation of a library
unit named in that procedure’s context clause. This implementation
determines that the recompiled unit's specification did not change, and so it
does not make the dependent procedure obsolete; the program executes, calling
Report.Failed. The AVO ruled that this behavior is acceptable, in light of
the intent for the revised Ada standard to permit such accommodating
recompilation; further deliberation by the AVO and ARG will determine whether
these (and many related) tests will be withdrawn.

The tests below were graded passed by Test Modification as directed by the
AVO. These tests all use one of the generic support procedures, Length Check
or Enum Check (in support files LENCHECK.ADA & ENUMCHEK.ADA), which use the
generic procedure Unchecked Conversion. This implementation rejects
instantiations of Unchecked Conversion with array types that have non-static
index ranges. The AVO ruled that since this issue was not addressed by
AI-00590, which addresses required support for Unchecked Conversion, and
since AI-00590 is considered not binding under ACVC 1.11, the support
procedures could be modified to remove the use of Unchecked Conversion.

Lines 40..43, 50, and 56..58 in LENCHECK and lines 42, 43, and 58..63 in
ENUMCHEK were commented out.

CD1009A CD10091 CD1009M CD1009v CD1009wW CD1CO3A
CD1C04D CD2A21A..C CD2A22J CD2A23A..B CD2A24A CD2A31A..C

2-5

IMPLEMENTATION DEPENDENCIES

*CD2A8S1A CD3014C CD3014F CD3015C CD3015E..F CD3015H
CD3015K Cp3022A CD4061A

*CD2A81A, CD2AS1B, CD2ASBlE, CD2AB3A, CD2A83B, CD2A83C, and CD2AS3E were
graded passed by Test Modification as directed by the AVO. These tests check
that operations of an access type are not affected if a ’'SIZE clause is given
for the type; but the standard customization of the ACVC allows only a single
size for access types. This implementation uses a larger size for access
types whose designated object is of type STRING. The tests were modified by
incrementing the specified size $ACC_SIZE with '+ 64‘.

CD2AS3A was graded inapplicable by Evaluation Modification as directed by the
AVO. The test contains a specification of a power-of-10 value as ’'SMALL for
a fixed-point type. The AVO ruled that, under ACVC 1.11, support of decimal
'SMALLS may be omitted.

CE2103A, CE2103B, and CE3107A were graded inapplicable by Evaluation
Modification as directed by the AVD. The tests abort with an unhandled
exception when USE ERROR is raised on the attempt to create an external file.
This is acceptable behavior because this implementation does not support
external files (cf. AI-00332).

CE3413B was graded inapplicable by Evaluation Modification as directed by the
AVOo. This test includes the expression "COUNT’LAST > 150000", which raises
CONSTRAINT ERROR on the implicit conversion of the integer literal to type
COUNT since COUNT'LAST = 32,767; there is no handler for this exception, so
test execution is terminated. The AVO ruled that this behavior was
acceptable; the AVO ruled that the test be graded inapplicable because it
checks certain file operations and this implementation does not support
external files.

Many of the Class A and Class C (executable) test files were combined into
single procedures ("bundles") by the AVF, according to information supplied
by the customer and guidance from the AVO. This bundling was done in order
to reduce the processing time-—compiling, linking, and downloading to the
target. For each test that was bundled, its context clauses for packages
Report and (if present) SYSTEM were commented out, and the modified test was
inserted into the declarative part of a block statement in the bundle. The
general structure of each bundle was:

WITH REPORT, SYSTEM;
PROCEDURE <BUNDLE NAME> IS

— repeated for each test

DECLARE

<TEST FILE> [a modified test is inserted here, ...)
BEGIN

<TEST NAME>; [... and invoked here]

EXCEPTION —test is not expected to reach this exception handler
WHEN OTHERS => REPORT.FAILED("unhandled exception ");
REPORT.RESULT;
END;

2-6

IMPLEMENTATION DEPENDENCIES

—_ [... repeated for each test in the bundle]
END <BUNDLE_NAME>;

The 1259 tests that were processed in bundles are listed below; each bundle
is delimited by ‘<’ and ’>’.

<A21001A A22002A A22006B A26004A A26007A A27003A A27004A
A29002A A29002B A29002C A29002D A29002E A29002F A29002G
229002 A29002I A29002J A29003A A2A031A> <A32203B A32203C
A32203D A33003A A34017C A35101B A35402A A35502Q A35502R
A35710A A35801A A35801B A35801F A35902C A38106D A3B106E
A38199A A39005B A39005C A39005D A39005E A39005F> <A39005G
AS4BO1A AS4B02A AS5B12A ASSB13A AS5Bl4A A62006D A71002A
A71004A A72001A A73001I A73001J A74105B A74106A A74106B
A74106C AT4205E A74205F> <AS3009A A83009B A83041B AB3041C
AB3041D AB3A02a AS3a02B AS3A06A AS3A0BA AB3CO1C AB3CO1D
AS3CO1E AB3CO1F AS3C01G AB3COlH A83COLI A83C01J AB5007D
AS5013B AB7BS9A> <AB7006A AC1015B AC3106A AC3206A AC3207A>
<AD1AO1A AD1AO1B ADIDOLE AD7001B AD7005A AD7101A AD7101C
_AD7102A AD7103A AD7103C> <AD7104A AD7203B AD7205B> <C23001A
C23003A C23006Aa C24002A C24002B C24002C C24003A C24003B
C24003C C24106A C24113A C24113B C24113C C24113D C24113E>
<C24201A C24202A C24202B C24202C C24203A C24203B C24207A:
€24211A C25001A C€25001B C25003A C25004A C26002B C26006A>
<C26008A C27001A C2A001A C2A001B C2A001C C2A002A C2A006A
C22008A C2A009A C2A021B> <C32107A C32107C C32108a C32108B
€32111A C32111B> <C32114A C32115A C32115B> <C32117A C34001A
C34001C C34001D C34001F C34002n C34002C C34003A C€34003C>
<C34004A C34004C C34005A C34005C> <C34005D C34005F C34005G
C34005I> <C34005J C34005L C34005M C340050> <C34005P C34005R
€340055 C34005U C34006A C34006F C34006G C340063> <C34006L
C34007A C34007D C34007F C34007G> <C340071 C340073 C34007M
C34007P> <C34007R C34007S> <C34009A C34009F C34009G C34009L
C34011B C34012a C34014A C34014C> <C34014E C34014G C34014H
C34014J C34014L C34014N C34014P C34014R C34014T> <C34014U
C34014W C34014Y C34015B C34016B C34018A (C35003A C35003B
C35003D C35003F C35102A C35106A C35404A> <C35503A C35503B
C35503C C35503D C35503E C35503F 355036 C35503H C35503K>
<C35503L C355030 (C35503P (C35504A C35504B C35505a C35505B
C35505C> <C35505D C35505E C35505F C35507A €35507B> <C35507C
C35507E C35507G C35507H C355071 C35507J> <C35507K C35507L>
<C35706A C35706B C35706C C35706D C35706E> <C35707A C35707B
c35707C C35707D C35707E C€35708a C35708B C35708C C€35708D
C35708E> <C35711A C35711B C35712A C€35712B C35712C C35713A
C35713C> <C35801D C35802a (€35802B C35802C C35802D C35802E>
<C35902A C35902B C€35902D C35904A C35904B C35A02A C35A03A
C35A03B C35A03C C35A03D> <C35A03N C35A030 C35A03P> <C35A03Q
C35A04A C35A04B C35A04C> <C35A04D C35A04N> <C35A040 C35A04P>
<C35A04Q C35A05A C35A05D C35A05N> <C35A05Q C35A06A C35A06B>
<C35A06D C35A06N C35A060> <C35A06P C35A06Q C35A06R C35A06S
C35A07A C35A07B C35A07C> <C35a07D C35A07N C35A070 C35A07P
C35A07Q C35A08B C36003A> <C36004A C36104A C36104B C36105B

2-7

IMPLEMENTATION DEPENDENCIES

2-8

C36172A C36172B C36172C> <C36174A C36180A C36202A C36202B
C36202C C36203A C36204A C36204B C36204C> <C36205A C36205B
C36205C C36205D C3620SE C3620S5F (C36205G C36205H> <C362051
C36205J C36205K C36301A C36301B C36302A C36303A C36304A
C36305A> <C37002A C37003A C37003B C37005A C37006a C37007A
C37008a C37008B> <C37008C C37009A C37010A C37010B C37012A
C37102B C37103A C37105A C37107A C37108B C37206a C37207a
C37208A C37208B C37209A C37209B C37210A> <C37211A C37211B
C37211C C37211p C37211E (C37213A C37213B C€37213C (C€37213D>
<C37213E C37213F C37213G C37213H> <C372133 C37213K (C37213L
C37214A> <C37215A C37215B> <C37215C (€37215D C37215E C37215F
C37215G C37215H C37216A C37217A C37217B C37217C> <C37304A
C37305A C37306A C37307A C37309A C37310A C37312A C37402a
C37403a> <C37404A C37404B C37405A C37409A C37411a C38002a
C38002B C38004A (C38004B (C38005A C38005B C38005C (€38006A
C38102a C38102B (C38102C (C38102D C38102E C€38104A C38107a
C38107B> <C38108A C38201A C38202A C39006A C39006B C39006D
© -C39006E C39006G C39007A C39007B C39008A C€39008B (C39008C>
<C41101D C41103A C41103B C41104A C41105A C41106A C41107A
C41108A C41201D C41203A C41203B> <C41204A C41205A C41206A
C41207A C41301A C41303a C41303B C41303C C41303E C41303F
C41303G C413031 C413033 C41303Kk C€41303M C41303N C413030
. C41303Q C41303R C41303s C41303Uu C41303v C41303w C41304A>
<C41304B C41306A C41306B C41306C C41307A C41307C C41307D
C41308A C41308C C41308D C41309A> <C41320A C41321A C41322A
C41323A C41324A C41325A C41326A C41327A C41328A> <C41401A
C41402a C41403A C41404A C42005A C42006A C42007A C42007B>
<C42007C C42007D C42007E C42007F C42007G C42007H C420071>
<C420073 C42007K C43003A C43004B C43103A €43103B C43104A>
<C43105A C43105B C43106A C43107A C43108A C43204A C43204C
C43204E C43204F> <C43204G C43204H C43204I C43205A C43205B
C43205C C43205D C43205E C43205F C43205G C43205H C432051
C43205J C43205K C43206Aa C43207A C43207B C43207C> <C43207D
C43208A C43208B C43209A C43210A C43211A C43212a C43212C
C43213a> <C43214A C43214B C43214C C43214D C43214E C43214F
C43215A C43215B C43222n> <C43224A C44003A C44003D C44003E
C44003F C44003G C45101A C45101B C45101C C4510iE C45101G
C45101H C451011 C45101K C45104A C45111A C45111B C45111C>
<C45111D C45111E C45112A C45112B C45113A> <C45114B C45122A
C45122B C45122C C45122D C45123A C45123B C45123C> <C45201A
C45201B C45202A C45202B C45210A C45211A C45220A C45220B
C45220C C45220D C45220E C45220F C45231A> <C45232a C45232B
C45241A C45241B C45241C C45241D C45241E> <C45242A C45242B
C45251A C45252A C45252B (C45253A C45262A> <C45272a C45273a
C45274A C45274B C45274C C45281A C45282A (C45282B (C45291A
C45303A C45304A> <C45321A C45321B C45321C C45321D C45321E>
<C45323A C45331A C45331D C45332A C45342A C45343Aa (C45344a
C45345A C45345B C45345C C45345D> <C45347A C45347B C45347C
C45347D C45411a C45411D C45412n> <C45413A C45421A C45421B
C45421C C45421D C45421E> <C45423A C45431A C45502A C45503A>
<C45504A C45504D> <C45505A C45521A C45521B C45521C C45521D
C45521E> <C45523A C45524A C45524B C45524C €45524D C45524E>
<C45532A C45532B C45532C (C45532D C4S532E C45532F C45532G
C45532H C455321 455323 C45532K C45532L> <C45534A C45611A

IMPLEMENTATION DEPENDENCIES

C45613A C45614A C45621A C45621B C45621C
<C45622A C45624A C45624B C45631A C45632A
C45641C C45641D C45641E> C45652A C45662A
C46011A C46012A C46012B C46012C> <C46012D
C46014A C46021A C46023A C46024A C46031A
<C46041A C46042A C46043A C46043B> <C46044A
C46051B C46051C> <C46052A C46053A C46054A
C47002C C47002D C47003A C47004A C47005A
<C47008A C47009A C47009B C48004A C48004B
C48004E C48004F C48005A C48005B C48005C
<C48007A C48007B C48007C C48008A C48008B
C48009A C48009B C48009C C48009D C4B8009E
<C48009H 480091 C480093 C48010A C48011A
C49021A C49022a C49022B C45022C C49023A
C49026A> <C4A005A C4A005B C4A006A C4A007A
C4n010D C4A011A C4A012A C4A012B C4a013A
<C51002A C51004A CS2001A C52001B C52001C
C52005C C€52005D CS52005E CS5200SF> <C52007A
C52009A C52009B C52010A C52011A C52011B
C52013A> <C52103B C€52103C C52103F (C52103G
C52103L> <C52103M C52103P C52103Q C52103R
C52104A C52104B C52104C C52104F> <C52104G
C52104L C52104M C€52104P C52104Q CS52104R
<C53004B (C53005A C53005B C53006A C53006B
C54A03A C54A04A C54A06A C54A07A C54AllA
C54A13C> <C54A13D C54A22A C54A23A C54A24A
C54A27A CS54A41A (C54Aa42A C54A42B C54Ada2C
C54A42F C54A42G C55B03A C55B04A C55BOSA
<C55B08A CSSBO9A C55B10A CS5BllA C55B11B
C55C01A C55C02A (C55C02B C55C03A C55C03B
C57002A C57003A C57004A C57004B C57004C
C58004B C58004C C58004D C58004F CS58004G
C58005H CS8006A €58006B C59001B C59002A
<C61008A C61009A C61010A C62002A C62003A
C62006A C62009A (C63004A C64002B> <C64004G
C64005C C64103A C64103B C64103C C64103D
<C64104A C64104B (C64104C C64104D C64104E
C64104H C641041 C641043 C64104K C64104L
C641040 C64105A C64105B C64105C C64105D
<C64106A C64106B C64106C C64106D C64107A
C64109B C64109C C64109D C64109E> <C64109F
C641091 C64109J C64109K C64109L> <C64201B
C65003A> <C65003B C65004A C66002A €66002C
C66002F C66002G C67002A C67002B C67002C
<C67003A C67003B C67003C C67003D C67003E
C67005C C67005D> <C72001B C72002A C73002A
C74203A C74206A C74207B C74208A C74208B
C74211A C74211B C74302R C74302B C74305A
C74307A> <C74401D C74401E C74401K C74401Q
C74406A C74407B C74409B> <C83007A C83012D
C83024A C83025A> <C83027A €83027C C83028A
<C83031A (¢83031C CB83031E (€83032A C83033A
C83B02B C83E02A C83E02B C83EO03A CB3EQ4A
C84002A C84005A C84008A C84009A C85004B

2-9

C45621D C45621E>
C45641A C45641B
C45662B C45672A
C46012E> <C46013A
C46032A C46033n>
C46044B C46051A
C47002A C47002B
C47006A C47007A>
C48004C C48004D
C48006A C48006B>
C48008C €48008D
C48009F C48009G>
C48012A C49020Aa
€49024A C49025A
C4a010A C4A010B
C4n013B C4A014A>
C52005a C52005B
C52008A C€52008B
Cc52012a C52012B
C52103H CS52103K
C52103s C52103X
C52104H C52104K
C52104X C52104Y>
C53007A C53008A
C54A13A C54Al3B
C54A24B C54A26a
C54A42D C54A42E
C55B06A CS55B06B>
CS5B15A C55B16A
C55D01A C56002A
C57005A> <C58004A
C58005A C58005B
€59002B €59002C>
C62003B C62004A
C64005a C64005B
C64103E C64103F>
C64104F C64104G
C64104M C64104N
C64105E C64105F>
c64108a C64109A
C64109G C64109H
C64201C C64202A
C66002D C66002E
C67002D C67002E>
C67005A C67005B
C73007A C74004A
C74209A C74210A
C74305B C74306A
C74402a C74402B
Cc83022a C83023A
C83029A C83030A>
Cc83051a C83B02A
C83F01A C83F03A
€85005a C85005B

IMPLEMENTATION DEPENDENCIES

C85005C CB5005D> <CB85005E C85005F C€85005G C85006A> <C85006F
C85006G> <C8TAOSA C87A05B C87B02A C87B02B CB7BO3A CB7BO4A
C87B04B CB7B0AC C87BOSA C87BO6A CB7BO7A C87BO7B> <CB7BO7C
C87B07D CB7BO7E C87B0BA C87BO9A C87B09B CB87B09C C87BlOA
C87B11A C87B11B C87Bl13A C87B14A (C87B14B (CB87B1l4C C87Bl4D>
<C87B15A CB7B16A C87Bl7A C87B18A (C87B18B CB7B19A CB87B23A
C87B24A> <C87B24B C87B26B C87B27A CB87B28A CB7B29A CB7B30A
C87B31A C87B32A> <CB10OlA CB1002A CB1003A (CB1004A CB10OSA
CB1010A CB1010B CBl010C CB1010D> <CB2004A CB200SA CB2006A
CB2007A CB3003A CB3003B> <CB3004A CB4001A CB4002A CB4003A
CB4004A CB400SA CB4006A CB4007A CB4008A CB400SA CB40l3Aa
CB5002A CB7003A CB7005A> <CC1004A CCl005C CC1l010A> <CC1010B
CcCl0isa CC1l104C CCl107B CCl1lllAa CC1204A CC1207B CCl220A
CC1221A CC1221B CCl221C CCl1221D> <CCl222A CCl224A CCl225A>
<CC1304A CC1304B CCl1305B CCl1307A CCl3078 CCl308a CC1310A>
<CC1311A CC1311B CC2002A CC3004A CC3007A CC301la CC3011lD
CC3012A CC3015a CC3106B> <CC3120A CC3120B CC3121A CC3123A
CC3123B CC3125A CC3125B CC3125C CC3125D> <CC3126A CC3127A ‘
CC3128A CC3203A CC32078B CC3208A CC3208B> <CC3208C CC3220Aa
CC3221A CC3222A CC3223A (CC3224A CC3225A> <CC3230A CC3231Aa
CC3232A CC3233A CC3234A CC3235A CC3236A CC3240A CC3305A
CC3305B CC3305C CC3305D CC3406A CC3406B CC3406C CC3406D
CC3407A CC3407B CC3407C CC3407D CC3407E CC3407F> <CC3408A
CC3408B (CC3408C CC3408D CC3504A CC3504B CC3504C CC3504D
CC3504E CC3504F> <CC3504G CC3504H CC35041 CC3504J CC3504K>
<CC3601A CC3601C> <CC3603A CC3606A CC3606B CC3607B>

2-10

CHAPTER 3
PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The aAda implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For technical and sales information about this Ada implementation, contact:

Robert R. Risinger

TLD Systems Ltd.

3625 Del Amo Boulevard
Torrance California 90503
(310) 542-5433

Testing of this Ada implementation was conducted at the customer’'s site by a
validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming Language
Standard, whether the test is applicable or inapplicable; otherwise, the Ada
Implementation fails the ACVC [Pro92].

For all processed tests (inapplicable and applicable), a result was cbtained
“hat conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various categories.
All tests were processed, except those that were withdrawn because of test
errors (item b; see section 2.1), those that require a floating-point
precision that exceeds the implementation’s maximum precision (item e; see
section 2.2), and those that depend on the support of a file system — if
none is supported (item d). All tests passed, except those that are listed
in sections 2.1 and 2.2 (counted in items b and £, below).

3-1

PROCESSING INFORMATION

a) Total Number of Applicable Tests 3534

b) Total Number of Withdrawn Tests 104
c) Processed Inapplicable Tests 67
d) Non-Processed 1/0 Tests 264
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 532 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A . magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded directly onto the host computer. :

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

The tests were compiled and linked on the host computer system, as
appropriate. The executable images were transferred to the target computer
system by the Serial Ports, and run. The results were captured on the host
computer system,

Testing was performed using command scripts provided by the customer and
reviewed by the wvalidation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The following options were used for testing this
implementation:

Compiler

Option / Switch Effect

NoPhase Suppress displaying of phase times during
compilation.

NoLog To cause command line to be echoed on log
file.

NoDebug To suppress generation of debug symbols to
speed compilation and linking.

List To cause listing file to be generated.

Target=i960 Selects the TLD Intel i960 target

architecture.

3-2

PROCESSING INFORMATION

Linker

Option / Switch Effect

NoDebug Suppresses generation of Debugger symbol
files.

Noversion Suppresses announcement banners that

contain timestamp and version information
to facilitate file comparing.

All tests were executed with Code Straightening, Global
Optimizations, and automatic Inlining options enabled. Where
optimizations are detected by the optimizer that represent deletion
of test code resulting from unreachable paths, deleteable
assignments, or relational tautologies or contradictions, such
optimizations are reflected by informational or warning diagnostics
in the compilation listings.

. Test output, compiler and 1linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by the
validation team were also archived.)

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG89]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for SMAX IN LEN—also listed here. These values are expressed here
as Ada string aggregates, where "V" represents the maximum input-line length.

Macro Parameter Macro Value
$MAX IN LEN 120 — value of v
$BIG_ID1 (1..v~1 => 'a’, V=> '1’)
$BIG_ID2 (1..V~1 => *A’, V => '2')
$BIG_ID3 (1..v/2 => 'A’) & '3’ &
(1..v=1-V/2 => 'a’)
$BIG_ID4 (1..v/2 => 'A’) & "4’ &
(1..V=1-v/2 => 'a’)
$BIG_INT LIT (1..v-3 => r0’) & "298"
$BIG_REAL LIT (1..v-5 => ’0’) & "690.0"
$BIG_STRING & (1..V/2 => 'A’) & '
$BIG_STRING2 ™ & (1..V-1-V/2 => 'A’) & "1’ & '™
$BLANKS (1..v-20 => *)

$MAX LEN INT BASED LITERAL
"2:" & (1..v=5 => '0’) & "11:"

$MAX LEN REAL BASED LITERAL
"16:" & (1..V-7 => '0') & "F.E:"

A-1

MACRO PARAMETERS
$MAX STRING LITERAL ‘"’ & (1..V-2 => 'A’) & '"'

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value
$ACC_SIZE 32
SALIGNMENT 4
$COUNT_LAST 511

$DEFAULT MEM SIZE 164400000004
$DEFAULT STOR UNIT 8

$DEFAULT SYS NAME 1960 -
$DELTA_DOC 2.0%*(-31)

$ENTRY_ADDRESS 15

$ENTRY_ADDRESS1 17

$ENTRY_ADDRESS2 19

$FIELD LAST 127

$FILE_TERMINATOR ASCII.FS

$FIXED_NAME NO_SUCH FIXED TYPE

$FLOAT NAME NO_SUCH FLOAT TYPE
$FORM_STRING e

$FORM_STRING2 CANNOT RESTRICT FILE CAPACITY

SGREATER THAN DURATION
190000.0

$GREATER THAN DURATION BASE LAST
131073.0

$GREATER THAN FLOAT BASE LAST
3.41000E+38

$GREATER THAN FLOAT SAFE LARGE
2.13000E+37

A-2

MACRO PARAMETERS
$GREATER_THAN SHORT FLOAT SAFE _LARGE
NO_SUCH_SHORT_FLOAT TYPE
SHIGH PRIORITY 20

$ILLEGAL EXTERNAL FILE NAMEl
VBADCHAR@. ! "

$ILLEGAL EXTERNAL FILE NAME2
'msrrmmnmmmmm &
"1 FITWERENOTSOLONG . SOTHERE"

SINAPPROPRIATE LINE LENGTH

-1
$INAPPROPRIATE_PAGE_LENGTH

-1
$INCLUDE_PRAGMAl FRAGMA INCLUDE ("A28006D1.TST")
$INCLUDE_PRAGMA2 PRAGMA INCLUDE ("B28006F1.TST")
$INTEGER_FIRST ~2147483648
$INTEGER LAST 2147483647

$INTEGER LAST PLUS 1 2147483648
$INTERFACE LANGUAGE ASSEMBLY
$LESS_THAN DURATION -90000.0
$LESS_THAN_DURATION BASE FIRST

- -131073.0
SLINE_TERMINATOR ACSII.CR
$LOW_PRIORITY 1
$MACHINE_CCDE . S’I!A‘I'E.'MENT

CTRL' (B, 1, True)

$MACHINE CODE TYPE CTRL
$MANTISSA DOC 31
$MAX DIGITS 15
$MAX_INT 2147483647
$MAX INT PLUS 1 2147483648
$MIN_INT -2 147 483 648

A-3

MACRO PARAMETERS

SNAME

$NAME LIST

$NAME_SPECIFICATION1
$NAME SPECIFICATIONZ
$NAME SPECIFICATION3
$NEG_BASED INT
$NEW MEM SIZE
$NEW_STOR UNIT
SNEW_SYS_NAME
$PAGE_TERMINATOR
$RECORD_DEFINITION
$RECORD_NAME
$TASK_SIZE
$TASK_STORAGE SIZE
$TICK

SVARIABLE ADDRESS
$VARIABLE ADDRESS1
$VARIABLE_ADDRESS2

SYOUR PRAGMA

NO_SUCH_INTEGER_TYPE

Pmachine, ns16000, vax, afl750 28002, 28001,
gould, pdpll, m68000, pe3200, caps, amdahl,
is086, 180286, 180386, 280000, ns32000,
ibmsl, m68020, nebula, name x, hp, bbl,
hawk, r1666, 1960

Not supported

Not supported

Not supported

164#FFFFFFFE$

164100000004

8

i960

ACSII.CR & ASCII.FF

Withdrawn

withdrawn

32

2000

0.000001

SYSTEM. "-"(16#7FFFFFF4%)

SYSTEM. "-"(1647FFFFFEC#)
SYSTEM."-"(16#7FFFFFE8#)

withdrawn

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted otherwise,
references in this appendix are to compiler documentation and not to this
report.

B-1

TLD ADA COMPILER 1960-A9A-2§

ComPILER USAGE

3.4 CoMPILER OPTION SWITCHES

Compiler opticn switches provide control over various processing and
output features of the compiler. These features include several
varieties of 1listing output, the 1level and kinds of optimizations
desired, the choice of target computer, and the operation of the
compiler in a syntax checking mode only.

Keywords are used for selecting varicus compiler options. The
complement keyword, if it exists, is used to disable a compiler option
and is formed by prefixing the switch keyword with *NO”.

Switch npames may be truncated to the least number of characters
required to uniquely identify the switch. For example, the switch
"CROSSREF" (explained in the list below) may be uniquely identified by
the abbreviation "CR" or any longer abbreviatiom. In the 1list of
swvitches on the following pages, the abbreviations are in bold and the
opticnal extra characters are not bolded.

If an option is not specified by the user, a default setting is
assumed. All specified compiler options apply to a single invocation
of the compiler.)

The default setting of a switch and its meaning are defined in the
table below. The meaning of the cooplemsnt form of & switch is
normally the negation of the switch. PFor some switches, the complement
meaning is not obviocus; these complement switch keywords are listed
separately.

In the description of the switches, the target dependent name target is
used. The value of this symbol is determined by the value of the
TARGET switch.

Compiler-generated £file specifications generally cocnform to host
ccnventions. Thus, any generatad filename is the source <filename
appended with the dafault £file type. The output file name can be
completely or partially specified.

#ﬂ.ﬂmkﬁ

TLD ADA COMPILER 1960-A§JA-Z§

CompiILER USaGE

SWITCH NAME MEANING

ADDRESS_SPACS-nmI (name, subsystem_name)
NOADpRrESS_SPACE -- default

This switch allows users to specify the association of a
compilation unit with a logical address space. This capability
will support the definition of i960 Extended Architecture "Domaing"
and domain calls. "

The name parameter is the name of the address space and
subsystem-pame is the name of the subsystem to which the address
space belongs. I1f subsystem-name is not supplied, then the address
space does not belong to a subsystem. This switch may appear in
any compilation, and applies to all the compilation wunits in the
compilation.

NOTE: An alternate method of associating compilation unit(s) with
a logical address space is to use the pragma Address_Space in the
compilation unit(s) and compile without using this switch. The
pragma Address_Space_Entry is used to indicate which subprograms
represent entities into the logical space (defined by this switch
or pragma Address_Space). Refer Section 5.2.F cof this document
under Implementation-Dependent Pragmas, for further informatiom.

This capability does not yet allow users to indicate cbjects that
are to be implemented and referenced as indepsndent objects.

TLDlnk will wverify that all compilation units in the link have an
address space attribute of the same value, or have no address space
attribute and will create either a domain (if an address attribute
is specified) or a program (if no address space attribute is
specified).

AlDeadb-filename
Ip -. detauit

This owitch causes informaticn collected during compilation to be
saved in a specified data base file or a default £file named
I9%60.ADB in the compilation directory. This information includes
the compilation units, the contained scopes, the local declarations
of cbjects and types and their descriptions, external references,
callers, calls, program design language (PDL) which is extracted
from stylized Ada comments embedded in the source code, and any
other information extracted f£rom similar stylized Ada comments.
The TLD Ada Info Display (TlDaid) permits the user to browse this
data base and to extract selected data base information to support
the understanding of a program or to produce documentation
describing the program.

ﬂmmm ore

TLD ADA COMPILER IQGD-AIBJA-%S

CoMpILER USAGE

CArr Trex
NOCArr_TrEs -- default

This switch is used in conjunction with ELABORATOR and LIST to
cause all .CTI files (cozrresponding to the camplete set of abject
files being linked for this program) to be read in and a closurs of
all calls in the program to be computed. The results of this
analysis is formatted into a subprogram call tree report and output
in the listing file. This switch has no effect without the
ELABORATOR and LIST switches.

NOTE: The call tree is incomplete if any required compilation
unit’s .CTI files are missing.

CHeexs -- gefawlt
CHecxs (= (check_identifier{,...})}
NOCHzcxs(= (check_identifier(,...})}

When the CHECKS switch is used, zero or more check_identifiers are
specified and the run time checks are enabled. The status of zun
time checks associated with unmentiocned check identifiers is
unchanged.

Without any check_identifiers, the NOCHECKS switch omits all run
time checks. If one or more check identifiers are specified, the
specified run time checks are omitted. The status of run time
checks associated with unmentioned check idencifiers is unchanged.

Checks can be eliminated selectively or completely by source
statement pragma Suppress. Pragma Suppress overrides the CHECKS
switch.

Check_identifiers are 1ligted below and are described in the LRM,
Secticn 5.2.B.

ALL_CHECKS -- default (comsists of all the checks below)

ACCESS_CHECK DISCRIMINANT CHECK DIVISION_CHECK
ELABORATION_CHECK INDEX_CHECK LENGTH_CHECK
OVERFLOW_CHECK RANGE_CHECK A STORAGE_CHECK

e e i

TLD ADA COMPILER IQGO-A?A-%S

ComMpPILER USAGE

COMuxxTcharacter-specification(. . .}

This sewitch allows the user to override a set of default meta
characters used to mark comments which have special meanings to the
Campiler. (In the scurce code, these meta characters must
immediately f£ollowv the Ada comment designator "--*.) Thers are 13
mata characters defined as positional entries in the string of
characters specified for this switch. To define omne or more
entries, all entries up to and including the last entry tOo Dbe
defined must be specified. Each of cthese characters may be
represented either by the character itself, or by a dollar sign *$*
followed by the character’s decimal ascii value. (The latter <fomm
is useful for specifying characters which would otharwise be
significant to the command line parser.) To spacify a dollar sign
character, use the form "$36". Remaining character positions are,
left unchanged. Capabilities for character positions in the string

. may be disabled by specifying either blank ("$32") or null (*$0°).
Please rufer to the ascii character set table in Appendix B for the
decimal value of ascii characters. The definition of each entry
and its current default value is as follows:

Position Descripti

1 Configuration Equals (default: "=")
This entry defines the character used to mark
conditicnal source lines which will be included in
the compilation only if its
comfiguration-identifier is specified with the
CONFIGURATION switch.

2 Cenfiguration Not Equal (dsfault: "#v)

This entry defines the character used to mark
conciicional source lines which will be included in
the compilation cnly it ics
configuration-identifier is pot specified with the
CORFIGURATION switch. This same character is used
to begin an "else" clause within a group of
conditional compilaticn lines. The lines between
this character and the end of the group will be
included in the compilation omnly if the
configuration-identifier for the group is ot
specified with the CONFIGURATION switch.

3 Begin Configuration (default: *(")
This entry defines the character used to mark the
begianing of a group of conditional compilatien
source lines.

T TS (LD S S T I et Gt s st Sttt i S G S Sr—— — —— —— —— — — G— S —— . —— ——— —— — — —_— A S (——— — — w——— — w——— f— —_—

#ﬂ.ﬂmk‘l‘ﬂ

TLD ADA COMPILER ‘ - IQGO-A?A-%%

CompILER UsacE

4 End Configuraticn (default: *)*)
This entry dsfines the character used to mark the
end of a group of conditional compilation source
lines.

See the CONFIGURATION command line option for more information on
conditional coampilation.

Souxce Reformatting Comment Characters
Posiri L ..
1 Continuatiocn Line {dsfault: *&*)

This entry defines the character used to mark a
comment continued from the previous line and for
which word-wrapping is performed during source code

reformatting.
6 Reserved for future use.
9 Reserved for furure use.
Zilaid Compent Characters

Position DRescription
8 Begin Topic {(default: "([v)

This entry dafines the character used to mark the
beginning of taxt associated with a topic name.

9 End Topic (defaulc: ")v)
This entry dafines the character used to mark the
end of text associated with a topic name.

10 Define Topic (default: "eo")
This entry defines the character used to mark the
definition of a corment meta character for a
particular user-defined topic name. This character
may subsequently be used as a shorthand for the
above method, eliminating the need to specify the
topic name at each occurrence.

1 Description (dsfault: ":*)
This entry defines the character used to mark a
comment as a description associated with the
previous declaratiom.

Li - B

TLD ADA COMPILER IQGO-A?A-%

CompiLER USAGE

12 PDL (default: *|*)
This entry dafines the character used to mark a

comment as Program Design lLanguage (PDL).

13 Command (default: "s$")

This entry defines the character used to mark a
comment as a cammand to control data collecticm.
This entry provides a mechanism for users to
maintain compatibility bstween the nsw
implementaticn and previcusly commented source. It
also may be used to provide a degres of
campatibility with tools similar to TiDaid.

See the Reference Document for the TID Utilities for more

information on TlLDaid.
CONF1GURATION={ (}cm;imum.imu:ie:{, . 30)

where the parenthesis () are required ocnly when more than one
configuration-idencifier is specified.

This switch provides a conditicnal compilation (cenfiguratiom)
capability by determining the specially commented source lines that
are to be included in the compilation. Source lines(s) can be
associated with a configuratiom-identifier which if supplied with
this switch, causes them to be included. Also, alternative source
line (s) can Dbe specially marked to be included if the
configuration-identifier is not supplied.

Eormat

Mark Source Line(s) Individually:
--sconfiguration-identifier conditicnal -source-line
or:
--#configuration-identifier ceadicional - source-line

The above format is repeatad for each source line to be marked as a
conditicnal source line.

Source line(s) beginning with "--=* are included in the compilatiom
if the configuration-identifier is specified with the command line
CONFIGURATION switch. Source line(s) beginning with "--#* are
included in the compilation if the configuration-idencifier is Q#ot
specified with the command line CONFIGURATION switch (CONFIGURATION
is not used or is used without that camfiguraticn-idencifier).

— — G — —— U A= — . W T (— ——" S S S— S S VT T— — S S G S S Y— . W S— —— a———

Flppmeroe

TLD ADA COMPILER IQGO-A?A-%S

ComMPILER UsaGE

¥ark a Group of Source Lines:

--{configuration-identifier

condizianal -source-line-1 }
} Compiled if
} configuration-identifier
. } is specified with this
conditicnal - source-line-n } swiceh.
xS :
alt-condicicnal -source-line-1 }
} Compiled if
} configuration-identifier
. } is pot specified with this
alt-conditicnal-source-line-n } switeh.

--}configuracion-identifier

Source line(s) between lines beginning with *--{" and "--#" are
included in the compilation if the configuration-identifier is
specified with the command line CONFIGURATION switch. Source
line(s) between lines beginning with "--#* and *--}" are included
in the compilation if the configuration-identifier is got specified
with the command line CONFIGURATION switch (CONFIGURATION is not -
used or is used without that configuration-identifier).

Hotes on Sviprax

Comments are examined for configuration switches only if they
occupy a line by themselves (i.e., the "--" gtarts at the first
non-blank character of the line.

The special comment characters "--=", *--#°, "-.{*, and "--}*" must
be entered as shown with no spaces between them.

The characters "=", "#°, *(", and *"}" are the default meta
characters for configuration switches, but they can be modified.
See the COMMENT command line cption for more information.

The configuratico-identifier must immediately follow the special
comment characters; no space is allowed between them.

The configuration-identifier om the closing brace "--}* is
opticnal, but if specified must match the identifier on the
corresponding opening brace "--{".

ﬁ'ﬂ-ﬂ SuSTEMS LTD

TLD ADA COMPILER IQGD-A?A-%E

ComPILER USAGE

The "--#" has one or the other of two distinct meanings: 1) if
followed by a configuration-identifier, it means °"compile the
balance of this line conditionally® and 2) if no identifier
follows, it means "toggle the sense of the innermost configuratiom
brace".

Any additicnal text oo the same line as the
*--{configuration-identifier” and/or the "--}
configuration-idencifier” will be comsidsred a comment and will got
be compiled as Ada source, regardless of the comnfiguration
settings.

Naming C .

- . By default, a /CONFIG=I960 setting is created for the target
computer and model (by the /TARGET and the /MODEL Compiler
switches). Therefore, 1960 is not a valid configuratiocn-identifier
for conditional compilatiom. If used, conditional source with that
name will always be included in the compilation whether or not this
switch is specified (since that name is already specified for the
target and model, by default).

Kesting

The compiler treats nested conditional source in a manner similar
to nested *if" statements. It checks the configuration-identifier
to determine if it has been specified with the CONFIGURATION gwitch
(similar to the checking performed to determine whether an "if*
statement is to be performed). If so, it selects the source marked
with that configuration-identifier (just as an "if" statement is
performed for a "True® "if" condition). If not and alternate
conditional source exists, it selects the alternate scurce for that
configuration-idencifier marked with "--#" (just as an “else"
statement is performed for a "False" "if" condition). It centinues
this checking for every nested configuration-idemcifier it
enCOoUnters.

ﬁmgm

TLD ADA COMPILER I960-A9A-2C

CompILER UsaGce - 16

Compiled if A i

specified with

. this switch.

conditional - source-line-An

--#

alt-conditicoal -source-line-Al
. Compiled if A is ngt

specified with

this switch.

alt-conditicoal -source-line-An

--{B
conditiocnal -source-line-Bl

Compiled if A is pot

and B is specified

with this switch.

)
}
}
}
}
}
}
}
}
}
}
}
;
conditional -source-line-Bn }
--#
alt-cenditional -socurce-line-B1 }
. } Compiled if A and B are
} aot specified with
. } this switch.
alt-conditional -source-line-Bn }
--{¢c
conditicnal -source-line-C1 }
. } Compiled if A and B are
} oot and C jig specified
} with this switch.
}
}
}
}
}
}

conditicnal - source-line-Cn

--#

alt_conditicnal-source-line-C1
. Compiled if A, B, and C

are pot specified with

this switch.

Configuration switches are examined and must be properly nested
regardless of whether or not the canfiguration-identifiers are
specified.

— ——
e — — — — —— I S — I G, - S—— — —— — —— —— . —— S S— —— —— —— — — — — — — — —— " W — Sm—— LS S
.

o e e

TLD ADA COMPILER IQGO-A?A-%

ComPILER USAGE

The following example format is invalid, since "B" is not
completely nested within *A":

'~(A
'°{8
°°}A
-.}3

At the close of "A*, the nested "B" will be forced closed with the
warning message: "Missing configuration commant: --}B". By the
time "--}B" is reached, "B" will have already been closed, so the
following warning will be issued: “"Unmatched configuraticn
conpnent: --}B".

CRossrer
NOCRossrer -- default

This switch generates a cross refersnce listing that contains names
referenced in the scurce code. The cross reference listing is
included in the listing file; thersfore, the LIST switch must be
selected or CROSSREF has no effect.

CT:

NOCT: -- default

This switch generates a CASE tools interface file. The default
filename is derived f£rom the object filename, with a .CTI
extension. The .CTI file is required to support the CALL_TREE,
FULL_CALL_TREE, and INVERTED_CALL_TREE switches.

DEBug -- default
NODEBus

This switch selects the production of symbolic debug tables in the
relocatable cbject file.

Alternate abbreviaticn: DBg, NODBg

DIagNosTICS
NODIngwosTICS -- default

This switch produces a diagnostic message file compatible with

" Digital’'s Language Sensitive Bditor and IXinoTech Editor. See
Digital’s documentation for the Language Sensitive Editor for a
detailed explanaticn of the file produced by this switch.

Ty =

TLD ADA COMPILEP IQGO-A?A-%E

ComPILER UsaGE

ELaBoraTOR
NOELasoraTOR -- default

This switch generates a setup program (in unit-nameSELAB.OBJ (and a
listing file in unic-nameSELAB.LIS if the LIST switch was
specified)) that elaborates all compilation units on which the
specified library unit procedure (main program) depends and then
calls the procedure (main program). When the ELABORATOR switch is
used, The unit name of a previocusly compiled procecdurs must be
specified instead of a socurce file. It is not necessary to
distinguish a main program from a library unit when it is compiled.

Fori_caus_tres
NOFuzi_cair TREE -- default

When the FULL_CALL_TREE switch is used, the compiler listing
includes all calls including all nested calls in every call. The
NOFULL_CALL TREE switch shows all nested calls in the first
ingtance cnly and all subsequent calls are rsferred to the Zfirst
instance. This switch has no effect without the ELABORATOR and
LIST switches.

INDEXTATION=2
INDENTATION~3 -- default

This switch controls the indentation width in a reformatted source
listing (see the REFORMAT switch description). This switch assigns
a value to the number of columms used in indentation; the value n
can range from 1 to 8.

INFo -- default
NOINFo

The INFO switch produces all diagnostic messages including
information-level diagnostic messages. The NOINFO switch

suppresses the production of information-level diagnostic messages
only.

INSTANTIATE=OpLicn
NOINSTANTIATE -- default

This switch is used to establish a default mode of ingtantiatiom
for all generic instantiatioms within the compilatiom.

The opticz parameter instructs the Compiler to instantiate generics
in the manner specified, as described below:

single_body - a single body is used for all instantiaticns

macro - each instantiation produces a different body

g

TLD ADA COMPILER I960-A§)A-§g

ComMPILER USAGE

Please refer to Section 3.12 "Generics" for more information an the
advantages and disadvantages in using single_body gensrics versus
MACTO generics.

Nested instantiations and nested generics are supported and
generics defined in library units are permitted.

It is not possible to perform a macro ingtantiation for a generic
whose body has not yet been campiled.

NOTE: An alternate method of controlling macro instantiation of
a generic is by using pragma Instantiate in the source code and
performing compilation without this switch. The pragma comntrols
instantiation of a particular generic. Refer to Sectiom 5.2.F of
this document under Implementaticn-Dependent Pragmas, for further
information.)

In the event of a conflict between the pragma and this switch,
the switch takes pracedsnce.

INTsL
NOINTsy -- gefaulr

This switch intersperses lines of source code with the assembly
code gensrated in the macro listing. This switch is valid only if
the LIST and MACRO switches are selected. It may be helpful in
correlating Ada socurce to generated code, but it increases the size
of the listing file.

INVERTED_CALL_TREE
NOINVERTED_CALL_TREE -- default

This switch determines which calls led to the present ocne. A
reversed order call tree is generated. This switch has no effect
without the ELABORATOR and LIST switches.

LIST{=1isting-£ile-apec)
NOLIST -- default in interactive mode
LIST -- default for background processes

This switch generates a listing file. The default filename is
derived from the scurce filename, with a .1LIS extension. The
listing-file-spec can be optionally specified.

i G S— — — —— — S— Vo—— —— . Gm———— N— — Y ———

ﬂ'ﬂ.ﬂmlﬁ'ﬂ

TLD ADA COMPILER | I960-A?A-ZC

COMPILER USAGE - 20

LOs
NOLOG -- default

This switch causes the compiler to write in the compilation log,
command line options and the file specification of the Ada source
£ile being compiled which is written to to SYSSOUTPUT (the
operating system’'s standard output). This switch is useful in
examining batch output logs because it allows tbe user to easily
determine which files are being compiled.

MACro
NOMACro -- default

This switch produces an assembly like ocbject code listing appended
to the source listing file. The LIST switch must be enabled or
this switch has no effect.

MAIN =ras
NOMAIN_z1as -- default

This switch makes the compiler treat the compilation unit being
campiled as a user-defined elaboration or setup program which is
used instead of that normally praduced by the ELABORATOR gwitch.
The source file must be specified instead of a unit name of a
previously compiled procsdure. Usually, the source £ile is
modified by the user, starting from the version produced by the
WRITE_ELAB switch.

MAXERRORS =
=500 -- default

This switch assigns a value limit to the number of errors forcing
job termination. Once this value is exceeded, the compilation is
terminated. Information-level diagnostic messages are not included
in the count of errors forcing termination. The specified value’s
range is from 0 to 500.

MOpELenodel -name

I£ this switch is not specified, TLDada provides compilation
capabilities that are common to all models of the target.

If this switch is specified, where model-name is cne of the models
below, TlDada provides compilation capabilities that are valid for
the specified model. The compilaticn that is performed for a
particular model may be valid for another model of the targer if it
supports the same machine-specific code (machine instructioms,
domains, etc.).

s . i, —— S S b Sty SV

#TLD SYSTEMS LTD

TLD ADA COMPILER I960-A9A-2C

COMPILER USAGE - 21

The following are valid models:

RUEKBBECLD

NEW rrerary
NONEW_r18RARY -- default

The REW_LIBRARY switch craates an IS60 subdirectory in your current
working directory and an I960.LIB library in that subdirectory,
replacing the contents of the prior subdirectory and library, if
they existed.

The NONEW_LIBRARY switch checks if an I960 subdirectory exists in

your current working directory and if it does not already exist, it

will create the 1960 subdirectory and an I960.LIB library in that
,» subdirectory.

NOTE: This switch along with the PARENT LIBRARY switch replaces
the MAKE_LIB switch. '

OBJECT(sabject-£ile-spec)
JECT -- default
NOOssscT

This switch produces a relocatable object file in the 1I960
subdirectory in the current compilation directory. The default
filename ig derived from the source filename, with a ".0BJ".
extension.

OPr .. defawlt
OPr{« (parametez(,...})}
T
NOOPT{= (parametez{,...}))

This switch enables the specified glcbal optimization of the
compiled code. The negation of this switch disables the specified
global optimization of the compiled code.

.ﬁm LD

TLD ADA COMPILER 1:960-ADA 2C

CoMPILER USAGE - 22

When the OPT switch is entered, without any parameters, all
optimizations listed below are curned on. This restores the
parameters to their defaults. When it is entered with parameters,
anly the specified parameters are turned on.

When the NOOPT switch is entered, without any parameters, all
optimizations listed below are turned off. When it is entered with
parameters, only the specified parameters are turned off.

Default optimizations . such as COMMON_ SUBEXPRESSION,
 CORSTANT_ARITHMETIC, DEAD_CODE, and VALUE_FOLDING, etc. should gpgt
be changed <for normal use. Users may wish to change these
optimizations for configuration or testing purposes, however, TLD
Systems recommends that they not be changed. These dsfault
optimizations should be changed only when there is an aboormal
situation with data or the program or a bad, TLD- or user-created
algorithm. For example, if the program has an unused procsdure the
default optimization parameter DEAD_SUBPROGRAM default will delete
it for production improvemant, however, the user may not want the
unused procedure deleted for Debugger purposes. If vusers are
finding a need to change these optimizations, please notify TLD
Systems so that we can resclve the problem more efficiently.

The_ followi \ 1 with the /OPT apd /NOGPT

swizches:
CODE_Movmgrer

This parameter moves code to improve exscution time. (For
example, moves invariant code out of a loop). This parameter
is turned on by default.

CODE_StrazGHTENING

This parameter ensures that program flow is well formed by
performing rearrangement of segments of code. This parameter
is turned on by default.

COMmon_susexprEssTON

Expressicns with the same operands are not computed a second
time. (For example, if an expression uses "A + B" and another
expressions uses "A + B", the Compiler does not compute the
second expression, sinCe it knows it has already computed the
value). This parameter is turned om by default. WARNING :
Tuxrning this switch off may cause unexpected results.

Ty ==

TLD ADA COMPILER IQGO-A?A-%?

CompPILER USAGE

CONsTaNT_arzTEMETIC

This parameter performs constant arithmetic. This parameter
is turned on by default. WARNING: Turning this switch off
may cause unexpectad results.

DEAD_Cons

This parameter removes code that cannot be reached such as
unlabeled cods following an unconditional branch. This
parameter is turned on by default. WARNING: Turning this
swvitch off may cause unexpected results.

DEAD_SurrroGcram

This parameter removes subprograms that are not referenced.
This parameter is turned on by default.

DEAD_Varners

This parameter remcves local temporary variables that are not
used during execution. This parameter is turned oan by
default.

DELassicy

This parameter optimizes codse by dsleting redundant
assignments. It only performs daletions allowed by the
semantics of Ada. This parameter is turned on by default.

InvIne

By default, the compiler autamatically inlines subprograms
that are not visible in a package spec and if the estimated
code size is smaller than the actual call, it will inline it.
This parameter is turned cm by default.

LITerar,_rooL

This parameter overrides the Compiler’s optimization
separation of compile time constants into a separate memory
pool. This parameter enables the user to exsrcise complete
control over data allocation. This parameter is turned on by
defaulct.

LOor_urwrorring

This parameter applies to register mamory canly. It causes an
expression computed at the end of a locp to be ramembered at
the top of the next iteratien. This parameter is turned on by
default. '

-

T

TLD ADA COMPILER I960-AI3)A-%E

CoMPILER USAGE

PreproLE

This parameter performs optimization in viry limited
contexts. This parameter is turned on by default.

REGISTER_DEDICATION

This parameter allows dedication of a register to an object or
expressicn value. This parameter is turned on by default.

SCagpurer

This parameter is used to activate the reorganizer phase of
the Compiler. Imnstruction Scheduling, as performed by the
Reorganizer, is a phase between the Code Generator and the
Object Formatter phases. The Reorganizer reads the Code File,
reorders the code, and outputs the Code File. This parameter
is turned off by default.

The purpose of the Reorganizer is to perform optimization on
the code gensrated by the Code Generator in order to minimize
the amount of time chat the hardware has to wait for data,
generated by earlier instructions, to become resady for use.

NOTE: If you choose to use this switch, TLD recommends that
the System Administrator set the user‘s page f£ile quota to
at least 60,000.

SInGLs_mopuLE

This parameter creates one object module per compilation unit
rather than one for each top-level subprogram. If this
parameter is not used, and the compilation unit spec and body
are in separate files, the extension "_b" is added to the
package name in the object file name of the package body
(i.e., package-name b.cbj) to differsntiate betwsen the
package body and spec. The user may locate csects from cnly
the body or spec by specifying the unigue cbject filename
(package-name b for the body or package-pame for the spec)
followed by the control section name. This parameter is
turned on by default.

STRENGTH_REDUCTION

This parameter selects operatcrs that execute faster. 7This
parameter is turned on by default.

ﬂmmuﬂ

TLD ADA COMPILER IQﬁO-AQA-%E

ComPILER USAGE

VALDE_rFoLDING

Substitutions ©f operands known to have the sams value are
performed before expressicn analysis optimization. (Pox
example, if B and C have the same value, the expression "A +
C* is used and "A + B" will be recognized as common and the
Compiler will not cempute the second expression, since it
knows it has the same value as the first). This parameter is
turned on by default. WARNING: Turning this switch off may
cause unexpected results.

PAG:-liBBS' -
PABE.60 - datenlt

Thisg switch assigns a value to the number of lines per pags for
listing. The value can range from 10 to 99.

PARExT LIBRARYS -library-
NOPARE&T_LIBRAgr:antault e

The PARENT_LIBRARY switch uses the specified library as the parent
library for the library to be created. 1750A must be included at
the end of the parent-library-spec. This switch may only be used
with the NEW_LIBRARY switch.

If the NOPARENT_LIBRARY switch is used, the library created by the
NEW_LIBRARY switch will have no parent library.

NOTE: This switch along with the NEW_LIBRARY switch replaces the
MAKE_LIB switch.

PARMs
NOPARMs -- default

Thig PARAMETER switch causes all option switches governing the
compilation, including the defaulted option switches, to Dbe
included in the listing file. The LIST option switch must also be
selected or this switch has no effect. User specified switches are
preceded in the listing file by a leading asterisk (*). This
switch adds approximately one page to the listing file.

PHasg -- default
NOPHass

This switch suppresses the display of phase names during
compilation. This switch is wuseful in batch jobs because it
reduces the verbosity of the batch log fils.

TLD ADA COMPILER '1960-ADA-2C

COMPILER UsaGE 3 - 26

REF Ip casgeopei
NOREF_In_cas:‘::;:'m -- default

This is a reformatting option, under the control of the REFORMAT
switch. This switch determines how variable names appear in the
compiler listing. The options for this switch are:

ALL_LOWER -- All variable names are in lower case.
ALL_UPPER -= All variable names are in upper cass.
INITIAL_CRPS == All variable names have initial caps. -- default

REF Key CASEsoption
NOREF_Key_casgacption -- default

This is a reformatting option, under the control of the REFORMAT
switch. This switch determines hov Ada key words appear in the
campiler listing. The opticmns for this switch are:

ALL_LOWER == All Ada key words ars in lower case. -- dsfault
ALlL_UPPER -- All Ada key words are in upper case.
INITIAL CAPS -« All Ada key words have initial caps.

REFORMAT(=reformat-£ile-spec)
NOREFORT -- default

This switch causes the compiler to reformat the source listing in
the listing £ile (if no reformat-file-spec was provided) or
generate a reformatted source file, if a reformat-file-spec is
present. The desfault file extension of the raformatted source file
is ".RFM". Reformatting consists of uniform indentation and retains
numeric literals in their original source form. This switch
performs the <reformatting as specified by the REF_ID_CASE,
REF_KEY_CASE, and INDENTATION switches.

SOURCE -- default
NOSOurce

This switch causes the input scurce program to be included in the
ligting £ile. TUnless they are suppressed, diagnostic messages &re
always included in the listing file.

SYNTAx_ompy
NOSYNrax_owry -- default

This switch performs syntax and semantic checking on the source
program. No cbject file is produced and the MACRO switch is
ignored. The Ada Program Library is not updated.

#mmm Lro

TLD ADA COMPILER IQEO-AQA-%

CompPILER UsacGE

TARGET=i960 -- default

This switch selects the target computer for which code is to be
generated for this compilation. "i96€0" selects i%60 architecture

operation.

WARwINGS -- default
NOWARNINGS

The WARNINGS switch outputs warning and higher level diagnostic
messages.

The NOWARNINGS switch suppresses the output of both warning-level
and information-level diagnostic messages.

WlpTHecharacters-per-line
WIpTHa110 -- default

This switch sets the number of characters per lins (80 to 132) i=n
the listing file. .

WOrp_sTore

NOWORD_STORE -- default
The WORD_STORE switch simulates byte and half-word stores by using
full word instructions. This will allow only full word stores to
be performed. The NOWORD_STORE switch will allow byte and
half-word stores to be performed.

WRrTe_s1a8
NOWRITE_E1aB -- default

The WRITE_ELAB switch generates an Ada source file which represents
the main elaboration “setup®” program created by the compiler. The
unit name of a previcusly coopiled procedure must be specified
instead of a source file. The WRITE_ELAB switch may not be used at
the same time as the ELABORATOR switch.

XTRA
NOXTRA -- dsfault

This switch is used to access features under develcpment OT
features not defined in the LRM. See the description of this
switch in Sectiom 3.1S.

ﬂ TLD SWSETEMS LTD

COMPILATION SYSTEM OPTIONS

LINKER OPTIONS

The linker options of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,

references in this appendix are to linker documentation and not to this
report.

B-2

TLD 32-BIT UNIVERSAL LINKER IQGO-L*K-ZE

DIRECTIVE LANGUAGE

4 DIRECTIVE LANGUAGE

On any host, the command line calling TiLDlnk may opticnally specify a
linker directive file to concrol the linking operation. The directive
file formact and individual directives are described in the following
pages.

~

4.1 DirecTive FILE

Each line of the directive file contains up to 132 characters. Tabs
are treacted as blanks. Blanks are used to separate words when no other
punctuation separates them; the actual aumber of blanks is
insignificant. Characters that follow two successive minuses (--) are
ignored.

A directive ordinarily consists of one line of input, however, lines
may be continued using a tilde (~). Only one directive is allowed per
input line. A continuation character can be used to continue directive
values, however, a value cannot be split between two lines (if the
value does nor f£fit on the current line, the continuation character must
be used after the previous value and the value must be placed on the
following 1line). Either upper or lower case may be used (they are are
equivalent) except for file names on hosts with case-sensitive file
names.

A directive £ile may :include another directive f£ile. The format of
this directive is:

INCLUDE filespec(.lnk}

where the file extension .lnk may be cpticnally specified if the file
is a directive file, otherwise, if the file is an cbject module £file,
its extension must be supplied (i.e., .obj or .olb must be supplied).

An included file may itself include another directive file, that is, in
the example above, filespec.lnk may contain yet another directive
f£ile. The level of nested directive files allowed depends on the

number of €£iles cthact :the operating system permits to be opened
simultaneocusly.

DirecTIve LANGUAGE

TLD 32-BIT UNIVERSAL LINKER 1960-L§K-Zg

Conditicnal linking may be performed in the directive file. The Zormac
of this conditional liaking is:

if logical -expression then
{else | elsif logical-expressicn then}

endif

Iz the logical-expression returns a trus value, the statements
following the if or the eslsif clause will be processed, otherwise, the
cnes following the else clause will be processed.

- 4.2 DIRECTIVES

TLDink directives are described in this section, in alphabetical order.
The following words, in lower case italics, are used in the
descriptions:

csect -name

This is the name of the control secticon in the program being
linked.

file

This is a host file specification. A file specification must be
completely contained on a line.

group-name

This is a control sectionr that includes specified modules and/or
contzol sections of module(s).

module-name

This is the name of a module in-the program being linked.

paddress

This is a physical address in the form of a hexadecimal number
from 0 to FFFFF.

B-25

ﬂ‘mm;ﬂ:

TLD 32-BIT UNIVERSAL LINKER ISSO-L&!K-ZS

DrreECTIVE LAWGUAGE

Ppage

This is a physical page number in the fozrm of a hexadecimal
number fxrom 0.to FFFFF. - .

symbol

This is the name of an external symbol in the program being
linked.

vaddress

This is a vircual address in the form of a hexadscimal number
from 0 to FFFFFFFF (2*+32 - 1).

vpage

-

This is a virtual page number in the form of a hexadecimal
number fxom 0 to FFFFF.

Bach TLDlnk directive is described below.

ASSIGN (vpage=ppage{,...})

The ASSIGN directive causes the specified virtual page to be
mapped to the corresponding physical page.

For example,
ASSIGN (40000=C0O)

causes the specified virtual page 40000 hex to be mapped to the
physical page CO0 hex.

ASSIGN (40000=C0, 10000=80)

causes the specified virtual pages 40000 hex and 10000 hex to
be mapped to the physical pages C0 hex and B0 hex,
respectively.

COMMENT (s} {"}Text zo be put in Load Module{")}

The COMMENT directive contains text which TlDlnk puts in the
load module. TLDlnk precedes the text within quotes by ";;" to
distinguish user inserted comments £{rom those inserted by
TLDlnk which begin with ";". All ccmments specified by COMMENT
directives are inserted in the locad module immediacely
following the initial comment which is creaced by Tidlnk. If

B-26

Li > AN

TLD 32-BIT UNIVERSAL LINKER 1960-L§K-ZE

DIRECTIVE LANGUAGE

quotes are specified, they must exist at the beginning and end
of the text to be treated as a ccmment.

DEBUG {file)

When DEBUG is used the linker czesates a debug file containing
symbols and their values for cthe symbolic debugger and a
traceback file containing call and branching information. If
DEBUG is not specified, the linker does not produce the debug
file and traceback file. The linker puts symbols which were
included in the rslocatable cbject file in the dsbug file and
traceback information also in the relocacable cbject file in
the traceback file. The nams of the debug and traceback fileg
are derived the same way the map file name is derived as
described in the MAP switch. The format of the debug and .
traceback files is described in Appendix A.

This directive has che same functicnality as the linker switch
DEBUG described in Chapter 5.

This directive is always required (if the End-of-File is not
present). It terminates directive input to TLDlnk, so that any
subsaquent input is ignorad. After this directive is read,
TiD1lnk alloccates memory and reads the cbject files to produce
the load module.

FILL (vaddrsvaddress, lenasize-in-byres, {")pactern{")})

The FILL directive is used to £ill in all unused memory with a
user-specifiable value.

The vaddress paramster i3 the starting virtual address of the
£ill region, the size-in-bytes paramster is the number of bytes
to be filled wicth the pattern, and the partern paramecer is the
pactern used to £ill in the £fill region. The pair of double

quotas (" ") are required if the £ill pattern is a character
string.

GROUP (:group-name=) (namei(,zame2...}){(ace=ibuce(,...})}

This directive creates a grouping of control sections. The
argument name can be zodule-name, nodule-name:csect-name, oY
:group-name. If module-name is specified (without :csec:-name)
then the wild cazd "*" is assumed £or the csectc-name and all
control sections of the specified load module are used.

Because the group-name is associated with the "null"” module, it
is always preceded by the null module name: a colen (:). The
group name becomes a new contral secticon that :includes the

B-27

L - A

TLD 32-BIT UNIVERSAL LINKER I960-L}4{K-2g

DIRECTIVE LANGUAGE

specified control sections and the included comtrol sect:ions
may not be specified in any other group. If attributes are
specified, then only those control sections with the specified
attributes will be included in the group and the group'’'s
acttributes consist of only chose specified in the directive.

Thig directive, as well as thea SET directive, can zrefer :=o
attributes in pragma Attribuce in the source file. Refer o
the Reference Documenc for the TID Ada Ccumiler for further
information regarding pragma Attribute.

If no data or code attribute is specified and an instructicn
(code) control section is included in the specification, the
group will have the code actribuce. If data control section(s)
are also specified, a warning message is displayed indicacing
that the group contains mixed inscruction and data control
sections and that the code attribute is assumed for the group.
If no data or code attribute is specified and no instructicn
(code) control section is included in the specification, the
group will have the data attribuce.

The alignment of the group is by the "least common denominacor*
of all contzrol section alignment values. The length of the
group is the sum of the leangths of the included control
secticns plus necessary alignment. The length (as well as
other attributes) of the group may be changed by the SET
directive. After all explicit GROUP directives have been
applied, the Linker groups any remaining ungrouped control
sections and groups by similar attributes. Groups may be used
in other group directives.

Attributes may be cne or more of the following to select groups
with those attr:butas. The boolean attributes are separacted by
a comma to dencote a logical AND.

RERD

is a boolean TRUE if the csect is all readable,
otherwvise, it is FALSE.

NOREAD

is a boolean TRUE if the csect is not all readable.
otherwise, it is FALSE.

WRITE
is a boolean TRUE if the csect is all writable,
otherwise, it is FALSE.

NOWRITE
is a boolean TRUE :f zhe csec:t is not all wraitable,
otherwise, it is FALSE.

B-28

Ry

DIrecTIVE LANGUAGE

TLD 32-BIT UNIVERSAL LINKER IQGO-L!‘{K-ZE

CODE
is a boolean TRUE if the csect is all code, otherwise,
it is FALSE.

NOCCODE

is a boolean TRUE if the csect is not all code,
otherwise, it is FALSE.

DATA
is a boolean TRUE if the csect is all data, otherwise,
it is FALSE.

NODATA

is a bcolean TRUE if the csect is not all daca,
otherwise, it is FALSE.

To allow grouping of more control sections than can fit in a

single directive line, a continuacion character can be used or
the GROUP directive can be repeated (using the same group name)
as many times as needed to include all control sections needad

within that group. For example, if the following is in the
linker directive file:

GROUP :Group_ls(a,b,c)...
GROUP :Group_la(d,e,f)...

Group_l will contain a,b,c,d,e, and £.

Wild card symbols as previously described may be included in
the module-name, csect-name, and group-name (which is not the
name of the group, but a group to be included).

The ordering of the wild card specifications within the linker
directive file is important. 1If any wild card specificaction is
a subsec of another, the subset should be listed firsc. For

example, if the following groups are in the linker directive
file:

GROUP :Group_ls{abc*:lmn*) ...
GROUP :Group_2=(ab<:1lm=«) ...

control section "abed:lmno® will be included in Group_l, and
since it has been included into a group, will not be included
in Group_2.

The following is an example of incorrect ordering, where the
subset is listed after its containing sec:

GROUP :Group_l={(ab<:1lm=*) ...

B-29

L > B

DIRECTIVE LANGUAGE

TLD 32-BIT UNIVERSAL LINKER IQGO-L‘}‘{K-Z;:

GROUP :Group_las(abcw:lmm=) ...

In this example, control section "abed:lmmo” will be included
in Group_2, and since it has been included into a group, will
oot be included in Group_l.

INCLUDE {(}file{,...}{)}

The INCLUDE directive specifies the file(s) used for subsequent
linker input. This is the only linker directive that raquires
a complete filename (i.e., no file type or extension is
appended to the supplied name). 1If the file name ends in .gbj
or .olb, the file is assumed to be an cbject module file. I
the file name ends in .lnk, the file is assumed to be a
directive file. If only one filespec is specified, the

corresponding parencheses are not required. This directive may
be repeated.

NOTE: The GROUP and SET directives are used, instead of this
directive, to make specific selections of modules and/or
control sections to be included in the link.

A directive file may include another dizective file. The
format of this directive is:

INCLUDE filespec{.lnk}

where the file extension .lnk may be optionally specified if
the file is a directive file, otherwise, if the file is an
object module file, its extension must be supplied (i.e., .obj
or .olb must be supplied).

An included file may itself include another directive file,
that is, in the example above, filespec.lnk may contain yet
another directive file. The level of nested directive files
allowed depends on the number of files that the operating
system permits to be opened simultaneously.

LET symbol = expression

When LET is used, the linker sets the specified symbol to the
specified value or expression. This directive has the same
effect as defining the symbol as an EXPORT in an ocbject
module. Any external references to the specified symbol £rom
an object module are set to the value specified in the LT

directive. Currently, the expression argument must be a
hexadecimal number.

B-30

s meroen e

DIRECTIVE LANGUAGE

TLD 32-BIT UNIVERSAL LINKER IQGO-L&%K-ZE

LIBRARY({(}£:ila{,...))

This directive causes the specified cbject module library or
libraries to be searched to resolve undefined symbols. The
parencheses are not required if only cne filespec is spec=£ied.

The order that the filespecs are specified is the order in
which they are searxched. If library is used both on the
comrand line and in the directive file, the libraries specified
on the command line will be searched first followed by those
specified in the directive file.

TLDlnk will process the library directive or switch at the
point where it is specified, therefore, it should be specified
- after includes and searches.

This directive has the same functicnality as the linker SEARCH
directive and LIBRARY swicch which is described in Chapter S.

MEMORY (mem type_name, base_address, length_in_words, -
word_size_in_bits)

This directive describes a memory unit other than i960 standard
memory to which TLDlnk will allocate control sections
containing cobjects specified in pragma Memory Unic. The

mem type name argument is the character string specified Fragma
Memory Unit, the base_address argument is the starting address
hex value in special memory where the memory unit objects are
to be allocated, the length_in words argument igs the hex value
of the size in words of the special memory locaticn, and the
word_size_ia bits arqument is the hex value of the size in bits
of each word of special memory.

RESERVE (vaddravaddress, lenssize_in bytes{,...})

This directive indicates that no relocatable control sect:ons
are to be locaded into the specified address space.

SEARCH file

When SEARCH is used, TLDlnk searches the specified Z£ile for
modules which define currently undefined external references.
These modules are included as if they had been specified in an
INCLUDE direct:ive. Undefined weak external references (i.e.,
associated with WEAK IMPORT) do not cause inclusicn on a
search, but if an external is weakly referenced (i.e.,
associated with WEAK IMPORT) and strongly referenced (i.e., a
regular IMPORT), its defining module is loaded by SEARCH. New
external references £rom modules included £rom the search file
may cause addit:cnal modules to be :ncluded srom cthe search

B-31

e meermea oo

TLD 32-BIT UNIVERSAL LINKER IQﬁO-Ll}K-ZS

DrrECTIVE LANGUAGE

file, regardless of the order of modules in the search file.
For example, if the program references only S, S refersnces T,
and the 1library comctains T followed by S, both S and T are
included from the librxary.

This directive has the same funcrticnality as the linker LIBRARY
directive and LIBRARY switch which is described in Chapter S.

SET name’ ((}accributelsvaluel(,ateribuce2avalue2,...}{)}

This directive sets each specified attributes to the
corresponding value for the specified control section or
group. The argument name can be module-name,
module-name:csect-name, oY :group-name. If module-name is
specified (without :csect-name) then the wild card "+°* ig
assumad for the csect-name and all control sections of the
specified load module are used. The parencheses are required
only if more chan one attribute is specified. Because the
group-name is associated with the "null" module, it is always
preceded by the null module name: a colon (:).

This directive, as well as the GROUP directive, can refer to
atctributes in pragma Attribute in the source file. Refer to

the Reference Document <Sor <the TID Ada cCompjiler for further
information on pragma Attribute.

If no data or code attribute is specified and an instruction
(code) control section is included in the specificacion, the
control section or group will have the code attribute. If data
concrol section(s) are also specified, a warning message is
displayed indicating that mixed instruction and data control
sections have been included and cthac the code attribute is
assumed for the group. If no data or code attribute is
specified and no instruction (code) control section is included
in the specification, the control secticn or group will have
the data attribute.

Wild card symbols may be included in the module-name and
csect-name consisting of "** which matches one or more
characters and "?" which matches exactly one character. All
modules and control sections of the object module files - listed
in the include directive(s) that match the wild card pactern
are selected.

B-32

g o

TLD 32-BIT UNIVERSAL LINKER 1960-LNK-2C

DIRECTIVE LANGUAGE 4 - 10

Attribuctes may be one or mors of ths following to set or
reference an attribute value:

VADDR
is the beginning virtual address of this csect. It
consists of a hex or decimal number. TO set address(es)
in region 3, an eight-digit, non-negative, hex number
oust be used.

PADDR

is the beginning physical address of this csect. Since
the linker does not normally assign physical addresses,
this actribute must be set before it is referenced.

LEN{GTH}
is the length of this csect. *

ALIGN
is the alignment used for this csect.

READ
is a booclean TRUE if cthe csect is all readable,
otherwise, it is FALSE.

is a boolean TRUE if the csect is not all resadable,
otherwise, it is FALSE.

WRITE
is a boolean TRUE if the csect is all writable,
otherwise, it is FALSE.

NOWRITE

is a boolean TRUE if the csect is not all writable,
otherwise, it is FALSE.

CODE
is a boolean TRUE if the csect is all code, otherwise,
it is FALSEH.

NOCODE

is a bhoolean TRUE if the csect is not all ccde,
otherwise, it is FALSE.

DATA
is a bhoolean TRUE if the csect is all darca, otherwise,
it is FALSE.

B-33

TLD 32-BIT UNIVERSAL LINKER I960-L£IK-%(1:

DIRECTIVE LANGUAGE

NODATA
is a boolesan TRUE if the csect 1is
otherwvise, it is FALSE.

not all dacta,

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions as
mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which are
not a part of Appendix F, are:

package STANDARD is

type SHORT INTEGER is range -32768 .. 32767;
type INTEGER is range -2147483648 .. 2147483647;

type FLOAT is digits 6 range ~2.12676E+37 .. 2.12676E+37;
type LONG FLOAT is digits 15
range -I.123 558 209 288 95E+307 .. 1.123 558 209 _288 95E+307;

type DURATION is delta 2.0%**(-14) range -86 400.0 .. 86 _400.0;

c-1

APPENDIX F

The Ada language definition allows for certain machine dspendencies in a
controlled manner. No machine-dependent syntax or semantic extensiocns or
restrictions are allowed. The only allowed implementation-dependencies
correspond to implementatcn-dependent pragmas and attributes, certain
machine-dependent conventions, as mentioned in chapter 13 of the

MIL-STD-181SA; and certain allowed restrictions on repressntation
clauses.

The full definition of the implementation-dependent characteristics of
the TLD VAX/i960 Ada Compiler System is presented in this section
extracted from the compiler reference manual.

vax/1960/TRONIX PAGE 1

TLD ADA COMPILER IQGO-A?A-Z%

1960 TarGET COMPILER

5 1960 TARGET COMPILER
R e ——

This secticn identifies correspondences between features of the TLDacs
and sections of the Ada Langquage Reference Manual (LRM).

5.1 LRM CH.1 - INTRODUCTION

The formal standards for the Ada Programming Language are provided in

the Ada Lanquage Reference Mapual (LRM), ANSI/MIL-STD-181SA. TLD

Systems has developed TlLDacs in the spirit of those standards.

The machine dependencies permitted by the Ada language are identified
in LRM Appendix F. No machine dependent syntax, semantic extensions,
or restrictions are allowed. The only acceptable implementation
dependencies are pragmas and attributes, the machine dependsnt
conventions explained in LRM Chapter 13, and some restricticns on
representation clauses.

TLD Systems has developed implementation-dependent software to
specifically conform to these restrictions and has ‘developed
implementation-independent pragmas and attributes in the spirit of the
LRM. This software is described, below, in individual discussions that
follow the topical order (within chapters and appendices) of the LRM.
For a detailed description of the Run Time environment, refer to the

Reference Document for the TID Ada Run Time Svstem,

5.2 LRM CH.2 - Lexzcar ELEMENTS

The items described in this section correspond to the standards in
Chapter 2 of the LRM.

The following limits, capacities, and restrictions are imposed by
the Ada compiler implementation:

The maximum number of nesting levels for procedures is 10. There
is no limit to nesting of ifs, loops, cases, declare blocks, select
and accept scatements,

ii

1960 TargeT COMPILER

TLD ADA COMPILER I960-A?A-2§

The maximum number of lexical elemancs within a language statement,
declaration or pragma is not explicitly limited, but limited
depending on the combination of Ada constructs coded.

The maximm number of procedures per compilation unit is S00.

The maximum number of levels of nesting of INRCLUDE files is 10.
There is no limit on the total number of INCLUDEA or WITHed files.

Approximately 2000 user-defined elements are allowed in a
compilation unit. The exact limit depends upon the characteristics
of the elements.

A maximum of 500 severe (or more serious) diagnostic messages are
allowed for a compilation.

The range of status values allowed is the same as the range of
integer values, -2147483648..2147483647. hd

The maximum number of paramsters in a procedure call is 20.
The maximum number of characters in a name is 120.

The maxisum source line length is 120 characters.

The maximum string literal length is 120 characters.

The source line terminator is determined by the editor used.

Name characters have external representation.

5.3 LRM CH.3 - DecLARATIONS AND TYPES

The items described in this section correspond to the standards in
Chapter 3 of the LRM.

Number declarations are not assigned addresses and their names are
not permitted as a prefix to the ’address attribute.

Objects are allocated by the compiler to occupy one or more 8 bit
bytes. Only in the presence of pragma Pack or record representation
clauses are objects allocated to less than a word.

'Address can be applied tc a constant object to return the address
of the constant object.

Bxcept for access objects, uninitialized objects contain an

ii

TLD ADA COMPILER IQGO-A?A-Z?

1960 TarRGET COMPILER
undefined value. An attempt to reference the value of an
uninitialized cbject is not dstected.

The maximum nunber of enumeration literals of all types is limiced
only by available symbol table space.

The predefined integer types are:

Integer range -2_147_483_648 .. 2_147_483_647.
Short_Integer range -32_768 .. 32_768

System.Min _Int is -2_147_483_648.
System.Max_Int is 2_147_483_647.

The predefined real types are:

Ploat digits 6.
Long_Float digits 15.

System.Max _Digits is 15.
There is no predefined fixed point type name. Fixed point types
are implemented as data depending upon the range of values by which

the type is constrained.

Index constraints and other address values (e.g., access types) are
limited to 2147483647.

The maximum array size is limited to 2147483647.
The maximum string length is 2147483647.

Access objects are implemented as an unsigned integer. The access
literal Null is implemented as 0.

There is no limit on the number of dimensions of an array type.
Array types are passed as parameters opposite unconstrained formal
parameters using a descriptor packet vector.

Additional dimension bounds follow immediately for arrays with more
than one dimension.

Packed strings are generated instead of unpacked strings.

ii

TLD ADA COMPILER ISGO-A?A-ZE

1960 TarGeT COMPILER

5.4 LRM CH.4 - NaMmes AND EXPRESSIONS

The items described in this section correspond to the standards in
Chapter 4 of the LRM.

Machine_Overflows is True.

Pragma Controlled has no effect since garbage collection is never
performead.

5.5 LRM CH.5 - STATEMENTS

The items described in this section correspond to the standards in
Chapter S of the LRM.

The maximum number of statements in an Ada source program is
undefined and limited only by symbol table space.

Unless they are quite sparse, Case statements are allocated as
indexed jump vectors and therefore, are very fast.

. Loop statements with a "for*® implementation scheme are implemented
most efficiently if the range is in reverse and down to zero.

Data declared in block statemants is elaborated as part of its
containing scope.

5.6 LRM CH.6 - SuBPROGRAMS

The items described in this section correspond to the standards in
Chapter 6 of the LRM.

Arrays, records, and task types are passed by reference.

5.7 LRM CH.7 - PackaGes

The items described in this section correspond to the standards in
Chapter 7 of the LRM.

Package elaboration is performed dynamically, permitting a warm
restart without reloading the program.

ii

TLD ADA COMPILER IQGO-A?A-Zg

1960 TARGET COMPILER

5.8 LRM CH.8 - VisiBILiTY RULES

Not applicable.

NOTE: TLD has not produced a modification of the item(s) described in
this LRM section or documentation parallel to the information in this
LRM section.

5.9 LRM CH.9 - Tasks

The items described in this section correspond to the standards in
Chapter 9 of the LRM.

Task ocbjects are implemented as access types pointing to a Process
Control Block (PCB).

Type Time in package Calendar is declared as a record containing
two integer values: the current value of the real time clock
counter and the number of ticks that have elapsed on the countdown
timer.
Pragma Priority is supported with a range defined in package
System. The restriction on a dynamic expression for a task’s
priority has been removed congistent with Ada 3X. Note: Like Ada
9X, a pragma Priority placed in the main subprogram remains
restricted to a compile time static expression.
Pragma Shared is supported for scalar cbjects.
TLDada allows either a duration or a clock time to be specified in
a delay statement. If a duration is specified, the task is delayed
for that duration. If a clock time is specified, the task is
delayed until that clock time is reached.
The format for specifying a duration is:

delay expression
wvhere expressicn is of type Duration.
The format for specifying a clock time is:

delay until expression

where expression is of type Calendar.Time.

ii

TLD ADA COMPILER I960-A9A-2§

1960 TARGET COMPILER

Package Calendar is described in the Reference Document for the TID
Run Time Svstem, 1260 Targec,

5.10 LRM CH.10 - PrOGRAM STRUCTURE/COMPILATION

Ada Program Library processing is described in the Reference Document
. he TLD Ada Lil M 1960 T

Multiple Ada Program Libraries are supported with each library
containing an optiocnal ancestor library. The predefined packages are
contained in the TLD standard library, I960.LIB

5.11 LRM CH.11 - EXCEPTIONS

Exception handling is described in the Reference Document for the TID
Run Time System, i960 Targect,

Exception cbjects are allocated access objects to the exception name
string. The implemsntation of exceptions is described in the Reference
Document for the TID Run Time Svatem, i960 Target.

Bxceptions are implemented by the TLD Ada Compiler System to take
advantage of the normal policy in real time computer system design to
reserve S0% of the duty cycle. By axecuting a small number of
instructions in the prologue of a procedure or block containing an
exception handler, a branch may be taken, at the occurrence of an
exception, directly to a handler rather than performing the time
consuming code of unwinding procedure calls and stack frames. The
philosophy taken is that an exception signals an exceptional conditiom,
perhaps a serious one involving recovery or reconfiguraticn, and that
quick response in this situation is more important and worth the small
throughput tradeoff in a real time environment.

TlDada allows one task to asynchrounously signal a another task by
raising an exception in the other task. The following Ada statement
may be used in an Ada program to exercise this capability:

raise exception_name in task_name

There is no direct effect on the task raising the exception. It
continues exacuting the code following the raise statement. The
context of the targer task is set so that the next time it runs, it
will act as if the exception had been raised at the point at which it
was last executing. This feature requires the compiler switch XTRA.

ii

— e —— —— ———— —— — —

TLD ADA COMPILER IQGO-A?A-Z?

1960 TARGET COMPILER

5.12 LRM CH.12 - Generic UniTs

Generic implementaticn is described in the Reference Documepnt for the
ILD Rup Time Svatem, 1960 Target.

A single generic instance is generated for a generic body, by default.
Generic specifications and bodies need not be compiled together nor
need a body be compiled prior to the compilation of an instantiacion.
Because of the single expansion, this implementation of generics tends
to be more favorable of space savings. To achieve this tradeoff, the
instantiations must, by nature, be mors general and are, therefore,
somewhat less efficient timawise. Refer to pragma Instantiate for more
information on controlling instantiation of a generic.

5.13 LRM CH.13 - CrLAuses/IMPLEMENTATION

Representation clause support and restrictions are generally deacribed
in Section S5.2.F.

» Additional Informacion

A comprehensive Machine_Code package is provided and supported.
The specification for this package is included in the
Machine_Code_.Ada file.

The present version of the TLD i960 Ada Compiler System supports
two forms of code insertion language features. In addition to the
standard LRM form od record aggregate form of code insertions that
are fully supported, TLDacs supports an alternative form supplied
with package Machine_Code that defines a procedure for each i960
architecture instruction that is intrinsically implemented inline
by using a pragma Interface with a language type of i960; each such
procedure results in one instruction being inlined. Because a
procedure form is used, the restrictions placed upon the
Machine_Code aggregate form of insertion that prohibit mixing in
the same scope with declarations, statements, and functions do not
apply. Furthermore, the procedure form offers a more friendly
syntax that corresponds more to assembler input that does not
require all fields to be specified (as is true for machine code
aggregates) and can make use of parameter defaulting for such
fields as index registers.

To further support those users who need to write at the assembly
level, several additional procedures and pragmas have been added
that assist the uger in accessing Ada expressions, modifying Ada
operands, and in manipulating registers. Pragma Register may be

ii

—— — . —— — —— — ——— — ——— ——— — —

TLD ADA COMPILER IQGO-A?A-ZE

1960 TARGET COMPILER

applied to an Ada cbject to direct the compiler to allocate
(dedicate) the object to the designated ragister. Use of this
object on the left side of an assignment scatement will result in
cthe right side expression being computed and loaded into the
register associated with the left side cbject, a la C register
variables. Use of the object in a value reference context will
result in a use of the value currently found in the associated
register. This approach permits direct access to values from
complicated Ada expressions, packed and subscripted operands,
discriminated record components without having to know how the
compiler actually allocated the objects. Two additional procedures
are defined, Protect and Unprotect, which each take a register
parameter identifying a register that is to be reserved from
compiler use within the range of statements bracketed by the
Protect/Unprotect call pair.

Pragma Interface with a language type of Interrupt will result in
the prologue and epilogue of the indicated procedure generated to -
conform to the TLDrtx conventions for interrupt handlers. A
language type of Void will prevent the compiler from generating any
prologue or epilogue code and leave the responsibility for the
procedure entry and exit code to the statements within the
procedure: usually the above described intrinsically built-in
machine code procedures.

Unchecked_Deallocaticn and Unchecked_Conversion are supported.
Procedure Unchecked Deallocation (LRM 13.10.1)

Function Unchecked Conversion (LRM 13.10.2)

5.14 LRM CH.14 - Input/OuTPUT

The items described in this section correspond to the standards in
Chapter 14 of the LRM.

File I/0 operations are not supported.

Input/ocutput packages and associated operations are explained in
Section S.2.F of this manual.

ii

1960 TARGET COMPILER

TLD ADA COMPILER IQGO-A?A-ZS

5.2.A LRM App.A - PREDEFINED LANGUAGE ATTRIBUTES

The items referenced in this section correspond to the standards in
Appendix A of the LRM.

All LRM-defined attributes are supported by the TLDacs.

5.2.B LRM App.B - PREDEFINED LANGUAGE PRAGMAS

The items described in this section correspond to the standards in
Appendix B of the LRM. Any differences from the implementation
described in the LRM are listed below.

PRAGMA CONTROLLED

This pragma is not supported.

PRAGMA ELABORATE

This pragma is implemented as described in the LRM.

PRAGMA INLINE

This pragma is implemented as described in the LRM.

PRAGMA INTERFACE

pragma interface (language name, Ada_entity_name(, string});
pragma interface (system, Ada_entity_name) ;

Pragma Interface allows references to subprograms and cbjects that
are defined by a foreign module coded in a language other than Ada.

The following interface languages are supported:

o Asgembly for calling Assembly language routines;
o Intel’s i960 Architecture Specification for defining built-in
instruction procedures.

I£ the Ada_enctity_name is a subprogram, LRM rules apply to the
pragma placement. Pragma Interface may be applied to overloaded
subprogram names. In this case, pragma Interface applies to all
preceding subprogram declarations if those declaraticns are not the
target of another pragma Interface.

ii

TLD ADA COMPILER 1960-ADA-2C

1960 TARGET COMPILER 5 -10

For example:

package Test is
procedure P1;
pragma Interface (Assembly, Pl, "Asm_Routine_l");
procedure Pl (x:Long_Float);
pragma Interface (Assembly, Pl, "Asm_Routine_2");
end Test:;

In the example above, the first pragma Interface applies to the
first declaration of procedure P1l. The second pragma Interface
applies to only the second declaration of procedure Pl because the
£irst declaration of Pl has already been the object of a preceding
pragma Interface.

If cthe Ada_Entity Name is an object, the pragma mugt be placed
within the same daclarative region as the declaration, after thes
declaration of the cbject, and before any reference toc the object.

Void may be used as the language name to prevent the cCompiler from
generating any prologue oOr epilogue code and leave the
responsibility for the procedure entry and exit code to the
statemants within the procedure.

If the third parameter is omitted, the Ada name is used as the name
of the external entity and the resolution of its address is assumed
to be satisfied at link time by a corresponding named entry point
in a foreign language module.

If the optional string parameter is present, the external name
provided to the linker for address resolution is the contents of
the scring. Therefora, this string must represent an entry point
in another module and must conform to the conventicons of the linker
being used.

An object designated in an Interface pragma is not allocated any
space in the compilation unit containing the pragma. Its

allocation and location are agsumead to be the responsibility of the
defining module.

PRAGMA LIST
pragma List (on | off);

Compiler switch /LIST must be selected for the pragma List to be
effactive.

ii

TLD ADA COMPILER IQGO-AISJA-ﬂZ

1960 TARGET COMPILER

PRAGMA MEMORY_SIZE
pragma Memory Size (numeric_literal);

This pragma is not supported. This number is declared in package
System.

PRAGMA OPTIMIZE

This pragma is not supported. Compiler switches control compiler
optimization.

PRAGMA PACK

This pragma is implemented as defined in the LRM.

PRAGMA PAGE

This pragma is implemented as defined in the LRM.

PRAGMA PRIORITY

This pragma is implemented as defined in the LRM. Priority
contains a range defined in System_.Ada.

PRAGMA SHARED

Thig pragma is implemented as defined in the LRM. This pragma may
be applied only to scalar objects.

PRAGMA STORAGE_UNIT
pragma Storage_Unit (numeric_literal);

This pragma is not supported. This number is declared in package
System and has 8 bits per byte.

ii

1960 TARGET ComPILER

TLD ADA COMPILER I960-A?A-§g

PRAGMA SUPPRESS

pragma Suppress (access_check) ;
pragma Suppress (all_checks);

The all_checks parameter eliminates all run time checks with a
single pragma.
control of run time check suppression by command line
option, eliminating the need for source changes.

permits

pragma
pragma
pragma
pragma
pragma
pragma
pragma
pragma

Suppress
Suppress
Suppress
Suppress
Suppress
Suppress
Suppress
Suppress

In addition to the pragma, a compiler switch

(discriminant_check) ;
(division_check) ;
(elaboration_check) ;
(index_check) ;
(length_check) ;
(range_check) ;
(overflow_check) ;
(storage_check) ;

PRAGMA SYSTEM_NAME

pragma System Name (enumeration literal);

This pragma is not supported. Instead, compiler option is used to
select the target system and target Ada library for compilation.

5.2.C LRM App.C-PREDEFINED LANGUAGE ENVIRONMENT

The items described in this section correspond to the standards in
Appendix C of the LRM.

PACKAGE STANDARD

The specification for this package is included in the Standard_.Ada

file.

5.2.D0 LRM App.D - GLOSSARY

Not applicable.

ii

TLD ADA COMPILER IQGO-A?A-ZC

1960 TarGeT COMPILER - 13

5.2.E LRM App.E - SYNTAX SUMMARY

Refer to "Appendix B. Ada Language Syntax Cross Referencs® for the TLD
cross-referenced expression of this information.

5.2.F LRM App.F - IMPLEMENTATION CHARACTERISTICS

The items described in this section correspond to the standards in
Appendix F of the LRM.

IMPLEMENTATION-DEPENDENT PRAGMAS
PRAGMA ADDRESS_SPACE

pragma Address_Space (name{, subsystem_name}) ;

This pragma allows users to specify the association of a
compilation unit with a logical address space. This capability
will support the definition of i960 Extended Architecture "Domains’
and domain calls.

The following switch may be entered on the TLDada command line and
used instead of this pragma to associate compilation unit(s) with a
logical address space.

/address_spacesname| (name, subsystem_name)

In either the pragma or the switch, name is the name of the address
space and subsystem name is the name of the subsystem to which the
address space belongs. If subsystem name is not supplied, then the
address space does not belong to a subsystem.

This pragma may appear in any compilation unit. The command line
switch may appear in any compilation, and applies to all the
compilation units in the compilation.

This capability does not yet allow users to indicate objects that
are to be implemented and referenced as independent objects.

TLDlnk will verify that all compilation units in the link have an
address space attribute of the same value, or have no address space
attribute and will create either a domain (if an address attribute
is specified) or a program (if no address space attribute is
specified) .

ii

TLD ADA COMPILER I960-AISJA- %&‘

1960 TarGceT COMPILER

PRAGMA ADDRESS_SPACE_ENTRY

pragma Address_Space_Bntry (name(, entry number)(, encry_type});

This pragma allows users to indicate which subprograms represent
entries into the defined logical address space. This capability
will support the definition of i960 Extended Architecture *Domains"
and domain calls.

The name is the name of a previocusly declared subprogram, the
entry_number is an integer expression which is evaluatable at
compile time, and the entry_type is one of the following: Local,
Supervisor, or Subsystem. If encry_type is not specified, it
defaults to Subsystem.

This pragma may appear only in a compilation unit for which an
address space has been specified either by pragma or command line
switch.

This capability does not yet allow users to indicate objects that
are to be implemented and referenced as independent objects.

TlDlnk will verify that all compilation units in the link have an
address space attribute of the same value, or have no address space
attribute and will create either a domain (if an address attribute

is specified) or a program (if no address space attribute is
specified) .

PRAGMA ATTRIBUTE

pragma Attribute (Attribute-Name=>Attribute-Value, -
Item-Name(,...});

This pragma allows grouping of control sections with the specified
attribute.

If Item-Name is omitted, the specified attribute applies to all
control sections in the current module.

If Item-Name is Name’csect, the specified attribute applies to the
control section of the module containing Name. Name may be a
label, procedure, or data object.

If Item-Name is Name’code, the specified attribute applies to the
code contreol secrtion of the module containing Name.

ii

TLD ADA COMPILER I960-AISJA-ZC

1960 TARGET COMPILER - 15
If Item-Name is Name‘'daza, the specified attribute applies to the
data control section of the module containing Name.

If Item-Name is Name’constant, the specified attribute applies to
the constant control section of the module containing Name.

No other form of Item-Name is allowed.
The linker directives GROUP and SET, described in Chapter 4 of the

Reference Document for the TID Ligker can refer to attributes in
pragma Attribute in the source file.

PRAGMA AUDIT
pragma Audit (Ada-name{,...}); -
This pragma causes an error message tO0 be generated for the

campilation in which an Ada name, that is specified by this pragma,
is referenced. The Ada name may be a package, scope, data, etc.

PRAGMA COMPRESS
pragma Compress (subtype_name) ;

This pragma is similar to pragma Pack, but has subtly different
effacts. Pragma Compress accepts cne parameter: the name of the

subtype to compress. It is implemented to minimize the storage
requirements of subtypes when they are used within structures
(arrays and records). Pragma Compress is similar to pragma Pack in

that it reduces storage requirements for structures, and its use
does not otherwise affect program operation. Pragma Compress
differs from pragma Pack in the following ways:

-] Unlike pragma Pack, pragma Compress is applied to the subtypes
that are later used within a structure. It is got used on the

structures themselves. It only affects structures that later
use the subtype; storage in stack frames and glocbal data are
unaffected.

-] Pragma Compress is applied to discrete subtypes only. It
cannot be used on types.

o Pragma Compress does not reduce storage to the bit-level. It
reduces storage to the nearest "natural machine size". This
increases total storage requirements, but minimizes the
performance impact for referencing a value.

ii

TLD ADA COMPILER IQGO-A?A-%E

1960 TARGET COMPILER

For example:

subtype Small Int is Integer range 0 .. 25S;
pragma Compress (Small _Int) ;
type Num_Array is array (1 .. 1000) of Small_Int;

In this example, Small Int will be reduced from a 32-bit object to
an unsigned 8-bit object when used in Num_Array.

If pragma Compress had not been used then Small_Int would be the
same size as Integer. This is because a subtype declaration should
not change the underlying object representation. A subtype
declaration should only impose tighter constraints on bounds. 1In
this manner a subtype does not incur any extra overhead (other than
its range checking), when compared with its base type. Pragma
Compress is used in those cases where the underlying representation
should change for the subtype, therefore:

o Small_Int is compatible with Integer. It may be used anywhere
an integer is allowed. This includes out and in out paramesters
to subprograms.

o A Small_Int ocbject is the same size as Integer when used by
itself. This minimizes run time overhead requirements for
single objects allocated in the stack or as global data.

o Small_Int is 8 bits when used within a record or an array.
This can dramatically reduce storage requirements f£for large
structures. The access performance for compressed elementcs is
very near that of the un-compressed elements, but a slight
performance cost is incurred when the compressed value is
passed as an out or in cut parameter to a subprogram.

NOTE: Small_Int‘’s storage requirements could be reduced by
declaring it as a type rather than a subtype, however, Small_Int

would not be compatible with Integer, and this could cause
considesrable problems for some users.

PRAGMA CONTIGUOUS
pragma Contiguous (type_name | object_name) ;

This pragma is used as a query to determine whether the compiler
has alloccated the specified type of object in a contiguous block of
memory words.

ii

TLD ADA COMPILER IQGO-AIS)A-ZC

1960 TARGET COMPILER - 17

The compiler generates a warning message if the allocation is
noncontiguocus or is undstermined. The allocation 1is probably
noncontiguous when data structures have dynamically sized
components. The allocation is probably undetermined when
unresolved private types are forward type declarations.

This pragma provides information to the programmer about the
allocation scheme used by the compiler.

PRAGMA EXPORT
pragma Export (language_name, ada_entity_name, {string});

Pragma Export is a complement to pragma Interface. Export directs
the compiler to make the ada_entity_name available for reference by
a foreign language module. The language_name parameter idencifies
the language in which the module is coded.

Assembly is presently supported by Export. Ada is permitted and
presently means the same as Assembly. The semantics of its use is
subject to redefinition in future releases of TLDada. Void may be
used as the language name to specify the user’s language
convention. As a result of specifying Void, the Compiler will not
allocate local stack space, will not perform a stack check, and
will not produce prologue and epilogue cods. If the optional third
parameter, string, is used, the string provides the name by which
the entity may be referenced by the foreign module. The contents
of this string must conform to the conventions for the indicated
foreign language and the linker being used. TLDada does not make
any checks to determine whether these conventions are cbeyed.

Pragma Export supports only cbjects that have a static allocation
and subprograms. If the ada_eptity_name is a subprogram, cthis
Export must be placed in the same scope within the declarative
region. If it is an object, the ada_entity_name must follow the
object declaration.

NOTE: The user should be certain that the subprogram and cbject
are alaborated bafore the reference is made.

ii

TLD ADA COMPILER IQGO-A?A-%&

1960 TarceT COMPILER

PRAGMA IF

pragma If (compile_time_expression) ;
pragma Elsif (compile_time_expression) ;
pragma Else;

pragma Bad{ if};

These source directives may be used to enclose conditiocnally
compiled source to enhance program portability and configuration
adaptation. These directives may be located where language defined
pragmas, statements, or declarations are allowed. The source code
following these pragmas is compiled or ignored (similar to the
semantics of the corresponding Ada statements), depending upon
whether the compile_time expression is true or false,
respectively. The primary difference between these directives and
the corresponding Ada statements is that the directives may enclose
declarations and other pragmas.

NOTE: To use the pragma IF, ELSEIF, ELSE, or END, the /XTRA
switch must be used.

PRAGMA INCLUDE

pragma Include (file_path_name string);

This source directive in the form of a language pragma permits
inclusion of another source file in place of the pragma. This
pragma may occur any place a language defined pragma, statement, oOr
declaration may occur. This directive is used to facilitate source
program portability and configurability. b4 4 a partial
file_path_name_string is provided, the current default pathname is
used as a template. A file name must be provided.

NOTE: To use the pragma INCLUDE, the /XTRA switch must be used.

PRAGMA INSTANTIATE
pragma Instantiate (option(., name});

This pragma is used to control instantiation of a particular
generic.

ii

— —— v —— —

TLD ADA COMPILER 1960-AI5)A- 2C

1960 TARGET COMPILER -19

To establish a default mode of instantiation for all generic
instantiations within the compilation, the following switch may be
entared on the TlDada command line and used instead of this pragma:

/instantiatesopcion

In either the pragma or switch, option instructs the Compiler to
instantiate gensrics in the manner specified, as described below:

single_body - a single body is used for all instantiations
macro - each inscantiation produces a different body

In this pragma, name is the name of the generic to which this
. pragma applies.

There are two basic forms for this pragma. The firsc form omits

the second parameter, is associated with a generic declaration, and

is permitted to occur only within a generic formal part (i.e.,

after “"generic" but before "procedure®, "function", or "package").

In this form, the pragma establishes the default mode of
. instantiation for that particular generic.

The second form uses the second parameter, is associaced with the
instantiation, and may appear anywhere in a declarative part except
within a generic formal part. This form specifies what mode is ¢to
be used for the ingtantiation of the named generic which follows in
the scope in which the pragma appears. This form of the pragma
takes precedence over the first form.

In the following example, assume the following definition:

generic

pragma instantiate (single_body) ; -- pragma 1
package G ..

end G;

generic

pragma instantiate (macro) ; -- pragma 2
package H ...

end H;

ii

— A — — — — — — — — — — — —— — —— — —— T — — ———— ———— ——— — — — — —— ——— ———— —— — — —— d—— ——

TLD ADA COMPILER 1960-AISJA- 2C

1960 TarceT COMPILER - 20

package A is new G(...):
package B is new G(...);
package C is new H(...);
package D is new H{...);

pragma instantiate (macro, G); -- pragma 3

package E is new G(...);
package F is new G(...);

In the above example, packages A and B share the same body, due to
pragma 1. Packages C, D, E, and F will be treated as macro
instantiation C and D because macro instantiation is the default
for H (due to pragma 2] and for E and F because they follow pragma
3.

In both the pragma and switch:
© Nested instantiations and nested generics are supported and
generics defined in library units are permitted.

© It is not possible to perform a macro instantiation for a
generic whose body has not yet been compiled.

In this pragma:

e It is also not possible to perform a macro instantiation
from inside a single-bodied instantiation, because the
mAcrO instantiation requires information at compile time
which is only available to a single-bodied generic at
execution time.

In the event of a conflict between the pragma and switch, the
switch takes precedence.

Please refer to Section 3.12 “"Generics" for more information on the
advantages and disadvantages in using single_body generics versua
MACXO generics.

. —— — ——— —— ——— ——— — —— S— —— — ———— — ———— — ——— ——— — —- t—— ——— ——— 7—

PRAGMA INTERFACE_NAME
pragma Interface_Name (Ada_encity_name, string);
This pragma takes a variable or subprogram name and a string to be
used by the Linker to reference the variable or subprogram. It has

the same effect as the optional third parameter to pragma
Interface.

ii

TLD ADA COMPILER I960-AEA-ZC

1960 TARGET COMPILER - 21

PRAGMA IO_OBJECT
pragma IO_Object (object_name | type_name{,...});

An IO _Object is an cbject which is fully contained within a page
(4096 bytes) and which begins and ends on a full word (4 Dbyte)
boundary. 16 bytes of space preceding the IO_Object are reserved
by the Compiler for user-specified use. An object is specified to
be an IO_Object by use of the pragma I0O_Object.

If pragma I0_Object is applied to a type, then any cbject of that
type is an I0_Object. If pragma IO_Object is applied to an object,
then that object is an I0_Object.

Only static objects may be IO_Objects. If an attempt is made to
specify an cbject which is not static (e.g., an object declared
within a subprogram) as an IO_Object, TLDada issues a warning and
the object is treated as = normal object.
The following is an example of Ada source in which pragma IO_Object
is applied to an cbject:

type Buffer_ Type is ...

pragma IO_Object (Buffer_Type);

Buffer Object : Buffer_Type;

An IO _Object can only be applied to scalar or composite types and
cbjects but cannot to component(s) of a composite type.

An IO_Attribute can be used to determine whether or not an cbject

is an IO _Object and to return its value. Refer to section
Implementation-Dependent Attributes in this Chapter for more
information.

PRAGMA INTERRUPT_KIND

pragma Interrupt_Kind (entry_name, encry_cype(, duracion});
An interrupt entry is treated as an "ordinary" entry in the absence

of pragma Interrupt_Kind. When pragma Interrupt_Kind is used, an
interrupt entry may be treated as a "conditional" or "timed" entry.

ii

TLD ADA COMPILER IQGO-A?A-ZC

1960 TARGET COMPILER - 22

This pragma must appear in the task specification containing the
entry named and after the entry_name is declared. Three
encry_types are posgsible: ordinary, ctimed, and conditional. The
optional parameter duration is applicable only to timad entries and
is the maximum time to wait for an accept.

For an ordinary entry, if the accept is not ready, the task is
queued. For a conditional entry, if the accept is not ready, the
interrupt is ignored. For a timed entry, if the accept is not
ready, the program waits for the period of time specified by the
duration. If the accept is not ready in that pericd, the interrupt
is ignored.

PRAGMA LOAD
pragma Load (literal_string);

This pragma makes the Compiler TLDada include a foreign object
(identified by che literal_string) into the link command.

PRAGMA MEMORY_UNIT
-pragma Memory Unit (mem_type_name, ocbject_name | type_name, {...});

TLDacs will locate objects in memory units other than i960 standard
memory . Such objects are specified by use of pragma Memory Unit.
TLDada creates a control section for the specified memory unit and
allocates the specified objects or all objects of the specified
type to that control section. It passes the memory unit
information to TLDlnk in the ocbject module. The user specifies the
location and size of the non-standard memory unit to link through a
MEMORY directive. The mem_type name is the name of the memory unit
and is currently one of the following:

SPE

BME
GLOK
oT
SPMMIC
PBMMIC
SPMCASIU
PBMCASIU
FITS

WWPROM
SUBBRUS

ii

f

TLD ADA COMPILER 1960-ADA-2C

1960 TARGET COMPILER § - 23
and either object_name (the specified object) or the type_name (all
objects of that type) may be specified.

For example:
pragma Memory Unit (SPE, Buffer Type):

will collect all ocbjects of Buffer_Type in a control section for
the memory unit name SPE.

The only 1legal reference to an object in a memory unit is a
‘address reference.

PRAGMA MONITOR
pragma Monitor;

The pragma Monitor can reduce tasking context overhead by
eliminating context switching. This pragma identifies invocation
by the compiler. With pragma Monitor, a simple procedure call is
used to invoke task entry.

Generally, pragma Monitor restricts the syntax of an Ada task,
limiting the number of coperatiocns the task performs and leading to
faster execution.

The following restrictions pertain to Ada constructs in monitor
tasks:

o Pragma Monitor must be in the task specification.

© Monitor tasks must be declared in library level, nongeneric
packages.

o A monitor task consists of an infinite loop containing one
select statement.

© The "when condition®" is not allowed in the select alternative of
the select statement.

o The only selective wait alternative allowed in the select
statement is the accept alternative.

o All exscutable statements of a monitor task must occur within an

accept body.

o Only one accept body is allowed for each entry declared in the
task specification.

ii

TLD ADA COMPILER IQGO-AISJA-ZC

1960 TARGET COMPILER - 24

If a task body violates restrictions placed on monitor tasks, it is
identified as erronecus and the compilation fails.

PRAGMA NO_DEFAULT_INITIALIZATION

pragma No_Default_Initialization;
pragma No_Default_Initialization (typename{(,... }):

The LRM requires initialization of certain Ada structures even if
no explicit initialization is included in the code. For example,
the LRM requires access_type objects to have an initial value of
"NULL." Pragma No_Default_Initialization prevents this default
initialization.

In addition, initialization declared in a type statement is
suppressed by this pragma.

TLD implementation of packed records or records with representation
clauses includes default initialization of filler bits, i.e., bits
within the allocated size of a variant that are not associated with
a record component for the variant. No_Default_Initialization
prevents this default initialization.

This pragma oust be placed in the declarative region of the
package, before any declarations that require elaboration cods.
The pragma remains in effect until the end of the compilation unit.

NOTE: To use the pragma, NO_DEFAULT_INITIALIZATION, the /XTRA

switch must be used. The use of this pragma may affect the
results of record comparisons -nd assignments.

PRAGMA NO_ELABORATION
pragma no_elaboration;
Pragma No_Elaboration is used to prevent the generation of
elaboration code for the containing scope. This pragma must Dbe
placed in the declarative region of the affected scope before any
declaration that would otherwise produce elaboration code.

This pragma prevents the unnecessary initialization of packages

that are initialized by other non-Ada operacions. Pragma
No_Elaboration is used to maintain the Ada Run Time Library
(TLDrel) .

ii

TLD ADA COMPILER I%O-A?A-ZC

1960 TARGET COMPILER - 25

For example:

package Test is
Pragma No_Elaboration;
for Program_Status_Word use
record at mod 8;
System Masgk at 0*WORD range 0..7;

Protection_Key at O0*WORD range 10 .. 1l1; -- bits 8,9 unused

end record;
end Test;

In the above example, the No_Elaboration pragma, prevents the
generation of elaboration code for package Test since it contains
unused bits.

NOTE: To use the pragma, NO_ELABORATION, the /XTRA switch must
be used. The use of this pragma may affect the results of record
comparisons and assignments.

, PRAGMA NO_ZERO
pragma No_Zero (record_ type_name) ;

If the named record type has "holes® between fields that are
normally initialized with zeroes, this pragma will suppress the
clearing of the holes. If the named record type has no "holes”,
this pragma has no effect. Wwhen zeroing is disabled, comparisons
(equality and non-equality) of the named type are disallowed. The
use of this pragma can significantly reduce initialization time for
record objects.

PRAGMA PUT
pragma Put (value{, ...});

Pragma Put takes any number of arguments and writes their value to
standard output at compile time when encountered by the Compiler.
The arguments may be expressions of any string, enumeration,
integer type, or scalar expression (such as integer’size) whose
value is known at compile time. This pragma prints the values on
the output device without an ending carriage return; pragma
Put_Line is identical to this pragma, but adds a carriage return
after printing all of its arguments.

ii

TLD ADA COMPILER IQGO-AISJA-ZC

1960 TARGET COMPILER - 26

This pragma is useful in conditionally-compiled code to alert che
programmer to problems that might not otherwise come to his
attention via an excepticn Oor a compile-time error.

This pragma may appear anywhere a pragma is allowed.

PRAGMA PUT_LINE
pragma Put_Line (value{, ...});

Pragma Put_lLine takes any number of arguments and writes their
value to standard output at compile time when encountered by the
Compiler. The arguments may be expressions of any string,
enumeration, integer type, or scalar expression (such as
integer’size) whose value is known at compile time. This pragma
prints the values on the ocutput device and adds a carriage retugn
after printing all of its arguments; pragma Put is identical to
this pragma, but prints the wvalues without an ending carriage
return.

This pragma is useful in conditionally-compiled code to alert the
programmer to problems that might not otherwise come to his
attention via an exception or a compile-time exror.

This pragma may appear anywhere a pragma is allowed.

PRAGMA REGISTER
pragma Register (cbject_name, register_ number);

This pragma allows limited register dedication to an object for the
purpose of loading registers with complex Ada expressions or
storing registers into complex operands within machine code
insertion subprograms. The Compiler dedicates the specified
register to the specified object until the end of the scope is
reached or until it is released through a call to the subroutine,
Unprotect, in the Machine_Code package. The object_name is the
name of the cbject to be dedicated to the register and
register_number is the register number (without the "R" prefix that
is valid for the particular taxget).

These objects may be used on the left or right side of an
assignment statement to locad or store the register, respectively.

ii

TLD ADA COMPILER IQSO-AEA-%;:

1960 TarceT COMPILER

PRAGMA TCB_EXTENSION
pragma TCB_Extension (value);

This pragma is used to extend the size of the Task Control Block on
the stack. It can be used cnly within a task specification. The

parameter passed to this program must be static and represents the
size to be extended in bytes.

PRAGMA UNALIGNED
pragma Unaligned(name, ...):;

This pragma is used to accommodate an access cbject that contains,
or might contain, an address which is not four byte aligned. The
name parameter identifies an access type or object that contains
unaligned address values. The name parameter may also refer to a
formal parameter passed by address that might be occasicnally
passed an unaligned actual parameter.

PRAGMA WITHIN_PAGE

pragma Within_Page (type_name) ;
pragma Within_Page (abject_name) ;

NOTE: The type_name or object_name must have been previously
declared in the current declaration region and these declarations

must be in a static data context (i.e., in a package
specification or body that is not nested within any procedure or
function) .

This pragma instructs the compiler to allocate the specified
object, or each object of the specified type, as a contigquous block
of memory words that does not span any page boundaries (a page is
4096 bytes).

The compiler generates a warning message if the allocation is
noncontiguous or not yet determined (see the description of pragma
Contiguous, above). Additionally, the compiler generates a warning
message if the pragma is in a nonstatic declarative region. If an
abject exceeds 4096 bytes, it is allocated with an address at the
beginning of a page, but it spans one or more succeeding page
boundaries and a warning message is produced.

ii

TLD ADA COMPILER IQGO-A?A-ZC

1960 TarGeET COMPILER - 28

PRAGMA VOLATILE
pragma Volatile (variable_simple_name) ;

This pragma performs the same function as Pragma Shared, however,

it also applies to composite types as well as scalar types or
access types.

IMPLEMENTATION-DEPENDENT ATTRIBUTES
ADDRESS_TYPE

The attribute ’‘Address_Type is used in a length representation
clause to indicate that the address type is to have the
characteristics of an access descriptor (with a tagged bit).

The format is:

for type-name’'Address_Type use Access_Descriptor

TASK_ID

The attribute ‘Task_ID is used only with task objects. This
TLD-defined attribute returns the actual system address of the task
abjecet.

IO_ATTRIBUTE

The attribute ’‘I0_Attribute is used to determine whether or not an
object is an IO_Object.

When IO_Attribute is applied to an object, it returns a value of
type Object_Attribute Type, which is a private type declared in the
package System.

If the object ja an 10 _Object, then the value returned is the
address of a record containing the address of the object and the
number of bits in the object including any bits necessary for
padding (and does not include the preceding 16 Dbytes of reservea
user space).

I the object is pot an IO_Object, then the value returned is
Invalid_Object_Attribute, which is also defined in the package
System.

ii

TLD ADA COMPILER IQGO-A?A-ZC

1960 TarGceT COMPILER - 29

The association of an IO_Attribute with its IO_Object is maintained
only at compile tims. For example, if an IO _Object is passed as a
parameter to a subprogram, then within the subprogram, the
IO_Attribute for that I0_Object has the value
Invalid_Object_Attribute.

The following is an example of obtaining the value returned by
*I0_Attribute for the IO_Object Buffer_Object shown in the example
above (under the Pragma IO_Object subsection heading) .

A procedure which rsads information into an IQ_Object is defined as
{ollows:

procedure Get (...; Buff_Attr : System.Object_Attribute_Type:;
The procedure is called as follows:
Get (..., Buffer_Object’IO_Attribute, ...);

In the above example, the address of a record containing the
address of the object and the number of bits in the object are
raturned for Buffer_Object.

PACKAGE SYSTEM

The specification for this package is included in the System_.Ada
file.

REPRESENTATION CLAUSES

Record representation clauses are supported to arrange record
components within a rescord. Record components may not be specified
to cross a word boundary unless they are arranged to encompass two
or more whole words. A record component of type record that has
record representation clause applied to it may be allocated only at
bit 0. Bits are numbered from right to left with bit 31 indicating
the sign bit.

When there are holes (unused bits in a record specification), the
compiler initializes the entire record to permit optimum assignment
and compares of the record structure. A one-time initialization of
these holes is beneficial because it allows block compares and/or
assignments to be used throughout the program. I£ this
"optimization" is not performed, rscord assignments and compares
would have to be performed one component at a time, degrading the
code.

To avoid this initialization, the ugser should check to be certain

ii

v)i

TLD ADA COMPILER IQGO-AISJA-%:

1960 TargeT COMPILER

that no holes are left in the rscord structure. This may be done
by increasing the size of the cbjects adjacent to the hole or by
defining dummy record cooponents that £ill the holes. If che
lacter method is used, any aggregates for the structure must
contain values for the holes as well as the "real'" components.
Even with the extra components, this approach should optimize spacs
and speed in compariscn to pProcessing one component at a time.

If the component_clause of a record representation specification is
not in the same order as the component_list of the rescord
specificaticn, the entire record is initialized, as indicaced
above.

Address clauses are supported for variable objects and designate
the virtual address of the object. The Compiler System uses
address specification to access cbjects allocated by non-Ada means
and does not handle the clause as a request to allocate the oabject
at the indicated address. Address clauses to specify the address
to which code should be relocated, are not supported for
subprograms, packages, or tasks.

NOTR: Length clauses are supported for ’‘Size applied to objects
other than task and access type cbjects and denote the number of
bits allocated to the cbject.

Length clauses are supported for ‘Storage_Size when applied to a
task type and denote the number of words of stack to be allocated
to the task.

Length clauses are sgsupported for ‘Storage_Size applied to an
access type and indicates the number of storage units to be
raserved for the collection.

Bnumeration representation clauses are supported for value ranges
of Integer’First to Integer’'last.

An alignment representation clause has been added that
corresponds to Ada 9X that requests a subtype or object to be
allocated to an address that is a multiple of the alignment
value. Its syntax is

for object_or subtype’Alignment use expression;

The alignment expression must be a static value. The use of
multiple alignment clauses within the same control section will
result in the containing control section assuming an alignment
value which is the greatest common multiple (GCM) of the
alignment factors occurring within the control section.

ii

—— — — ——— —— . m—— ——— ——

TLD ADA COMPILER 1960-ADA-2C
1960 TarRGET COMPILER 5 - 31
CONVENTIONS FOR IMPLEMENTATION-GENERATED

NAMES DENOTING IMPLEMENTATION-DEPENDENT
COMPONENTS

The Compiler System defines no implementation dependent names for
compiler generated record components.

Two naming conventions are used by TLDacs. All visible run time
library subprograms and kernel services begin with the character
*A_". Global Run Time System data names begin with the characters
"AS$". The unique name created Dby the compiler for overload
resolution is composed of the user name appended with "_$*, plus a
maximum of three characters derived from the compilation unit name,

followed by three digits represencing the ordinal of the vigible

name within the compilation unit. The maximum length of this race
is 128 characters.

INTERPRETATION FOR EXPRESSIONS APPEARING
"IN ADDRESS CLAUSES

Address expression values and objects of type Address represent a
location in the program‘’s linear address space.

RESTRICTIONS ON UNCHECKED CONVERSIONS

Unchecked conversion of generic formal private types is not allowed.

IMPLEMENTATION-DEPENDENT CHARACTERISTICS
oF INPUT-0UTPUT PACKAGES

PACKAGE DIRECT_IO (LRM 14.2.5)

PACKAGE IO_EXCEPTIONS (LRM 14.5)

PACKAGE SEQUENTIAL_IO (LRM 14.2.3)

Input-Output packages are described in the Reference Document for
the TID Ada 1960 Run Time System,

ii

TLD ADA COMPILER 1960-ADA-2C
1960 TARGET COMPILER 5§ - 32
PACKAGE TEXT_IO (LRM 14.3.10)

The following implementation-defined types are declared in Text_Io:

type Count is integer range 0 .. S11;
subtype Field is Integer range 0 .. 127;

6 1960 TARGET COoMPILER CHARACTERISTICS

The characteristics of the target compiler are described in this
section.

6.1 1960 Run TiME CONVENTIONS
The Run Time conventions established for the TLD Ada Compiler and Run

Time System are explained in the Reference Document for the TID Run
Time Svstem, 1960 Tarxget, This information is necessary wvhen the
user’s application software is coded in a language other than Ada.

6.2 EXTERNAL NAMES

External names are supported to a maximum length of 128 characters or
the limits imposed by the i960 Linker. The system dependent character,
" ", is left as a "_" in external names since it is a 1legal character
for the Linker.

7 REeLOCATABLE 0BJECT FILES

TLDada produces Relocatable Object Files containing the results of the
compilation.

The TLDada Compiler partitions the generated object module into several
separately relocatable control sections. By default, instructions are
allocated in control section, S$ISECTS. Literals are allocated in a
read-only operand control section, $CONS$. Statically allocated data
are allocated in control section SDATAS. The NOCSEG switch may be used
to combine literals and data into the same control section.

The TLD Relocatable Object File is described in the Reference Document
: l .33 - 1 Lial {960 T

ii

TLD ADA

COMPILER

1960 TARGET COMPILER

The control section names and attributes are:

Attributes:

INDIRECT
MAPPED
RAM/ROM
SU/ROM
EMPTY
DMA
MPRAM
PREG
ROMONSP
o/t
PRLL

These attributes

Relocatable Control Sections

UNPROTECTED
UNPROTECTED
ONPROTECTED
RO,MECH UNSP
INSTRUCT MEM
MODULE ALLOC

SCONSS$

DIRECT
MAPPED
RAM_OR_ROM

MAIN MEMORY

NOT EMPTY
UNPROTECTED
UNPROTECTED
UNPROTECTED
RO,MRCH UNSP
OPERAND MEM
MODULE ALLOC

1960-ADA-2C
5 - 133

SDATAS UNMAPPED
Data Unmapped
DIRECT DIRECT
MAPPED UNMAPPED
RAM RAM
MAIN_MEMORY MAIN MEMORY
NOT EMPTY NOT EMPTY
UNPROTECTED UNPROTECTED
UNPROTECTED ONPROTECTED
UNPROTECTED UNPROTECTERD
UNPROTECTED UNPROTECTED
OPERAND MEM OPERAND MEM

MODULE ALLOC

MODULE ALLOC

are also described in the Reference Document for the

TID 32-Bit Universal Linker, i960 Target, Sections 3 and 4.2 describe
TIDlnk's use of attributes, Appendix A describes the TLD Relocatable

Object File attributes and associated values.

8 TARGET REFERENCE TABLE

The following table provides i960 parameter values.

ii

-« Purpose:
--X To satisfy the Ada LRM requirement for package SYSTEM

---------------------- D L L T e i e X T

-- type sddress is renge 0..168FFFF_FFFF#;
type address is range -2_147 683 648..2 _147_483_647;
for sddress'size use 32;

-+ an 960 33-bit access descriptor---we ignore the 33rd bit here
type access_descriptor is range -2_147_4B3_648..2_147_483_647;
for access_descriptorisize use 32;

type unsigned is range 0..2_147_483_647;
for unsigned'size use 31;

type short_integer is range -32_768..32_767;
for short_integer'size use 16;

type long_integer is range -2_147_483_648..2_147_483 647;
for long_ Tntegertsize use 32;

<~ Note: The order of the elements in the OPERATING_SYSTEMS and NAME
-+ enumerstions CANNOT be changed--they must correspond with the values
-~ in the CONFIG.CFG file.

type Opersting_Systems is (Unix, Netos, Vins, Ucsd, Msdos, Bare, Trump, RTX);

type Name is (Pmachine, Ns16000, vax, Af1750, 28002, 28001,
Gould, Pdp11, M68000, Pe3200, Caps, Amdshl,
18086, 180286, 180386, 280000, Ns32000, lbmsi,
M68020, Nebula, Name X, Hp, tb1, Hawk, R1666, 1960);

type Object_Attribute_Type is private;
Invalid_Object_Attribute : constant Object_Attribute_Type;

system_name: constsnt name := 1960;
os_name: constant operating_systems := RTX;

subtype priority is integer range 1..20; -- 1 is default priority.

--- note: the following priority is probably not valid for the Hawk
.- and will have to be modified when tasking is implemented
subtype interrupt_priority is integer range 1..15;

pragma put_Ltine(*>?, >t > 1 gystem name,
ULV L os_name, L SR LR R L) H

-- Langusge Defined Constants
storage_unit: constant := 8;
memory_size: constant := 16#4000_0000#; -- 256M words per segment

min_int: constant := -2**31;
mex_int: constant := 2**31.1;
max_digits: constant := 15;

max_mantissa: constant := 31;
fine_delta: constant := 2.0%*(-31);

ticks_per_second : constant := 1_000_000.0; -- Clock ticks are 1 usecs.
tick : constant := 1.0/ticks_per_second;

ticks_per_rtc : constant := 16#100_0000#;

-- gystem specific constants

address_0: constant address := 0; =~ Zero address

null_address: constant address := 0; =« Null ptr as system.address

null_AD : constant sccess_descriptor := 0; -- null AD, untagged

private
type Object_Attribute_Type is record
Object_Address : Address := null_address;
Object_Size : Integer := Integer‘first;
end record;
Invalid_Object_Attribute : Constant Object_Attribute_Type :=
(&ject Address => null_sddress,
(bject Size => Integer'first);
end system;

eneh

The following software is the property of TLD Systems, Ltd.

.o Copyright (C) TLD Systems, Ltd., 1992

cnsh

.-t When this softuare is delivered to the U.S. Government,
s-en the following applies:

P

Py

RESTRICTED RIGHTS LEGEND

---% Use, duplication, or disclosure by the Goverrment is subject to
---% regtrictions as set forth in subpargreph (c)(1)(ii) of the Rights in
---% Technical Data and Computer Software clasuse at 52.227-7013.

--en TLD Systems, Ltd., Torrance, California

-- 1 Source file name:
-- SYSTEM.ADA

== | Packages defined:
.- system - system constained constants and types

-- | Revision history:

-- 07-21-88 glw new code for Hawk-32:

.- add types: short_integer, long_integer

-- 1. add 'osvs' to operating_systems type

.- add 'hawk' to name type

-- change priority range to 1..200

- change address range to O..164FFFFFFFF#

-- change address‘'size to 32 bits

-- change memory_size to 16#10000000#

L T L R N AL R L LR R R L L LR L T LR *
package system is

-- SRS Requirements:

--#extract requirements

--#one.

--#end

e+ feccvacssrascsevencuceromnasretsses e e eccese et sasstusnnnnan esmsecsacccn +
-~ | Package name:

- system - system constrained constants and types

-- | Initialization entry:
- none

== | Types/subtypes defined:

= address

- unsigned

- short_integer

- tong_integer

- operating_systems

- name

- priority

- interrupt_priority

. Object_Attribute_Type
-+ | Constants defined:

- system_name

- os_name

- storage_unit

-~ memory_size

- min_int

- max_int

i wmax_digits

- max_mantissa

- fine_delta

.- ticks_per_second

- tick

- ticks_per_rtc

- address_0

.- null_sddress

.- null_AD

-- Invalid_Object_Attribute
se $eveasmorecsecences= eeesvasesevressmscancesaresem s eass oo oo schosetananane +

